Synlett 2021; 32(20): 2090-2096
DOI: 10.1055/a-1585-4490
letter

A [4+3] Cycloaddition Reaction of Aza-ortho-quinone Methides with C,N-Cyclic Azomethine Imines for Synthesis of 1,2,4-Triazepines

Xinyue Wang
,
Zefei Li
,
Chang Feng
,
Qi Zhen
,
Mingzhang Guo
,
Yaning Yao
,
Xinyu Zou
,
Pengfei Wang
,
Yunlei Hou
,
Ping Gong
We are grateful to the Program for Innovative Research Team of the Ministry of Education, The Program of Liaoning Revitalization Talents Program (XLYC1808037).


Abstract

The base-induced formal [4+3] cycloaddition reaction of C,N-cyclic azomethine imines with aza-ortho-quinone methides, generated in situ, is reported. This protocol provided an efficient method for the synthesis of biologically important 1,2,4-triazepine derivatives, with a wide substrate scope and excellent functional-group tolerance, and it gives moderate to excellent yields under mild conditions. Several of the derivatives exhibited in vitro antitumor activities against the A2780 cell line in a screening of the cancer cell lines HCT-116, H2228, and A2780 by an MTT assay.

Supporting Information



Publication History

Received: 08 July 2021

Accepted after revision: 12 August 2021

Accepted Manuscript online:
12 August 2021

Article published online:
24 August 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Zhou M.-B, Song R.-J, Li J.-H. Angew. Chem. Int. Ed. 2014; 53: 4196
    • 1b Liu N, Song W, Schienebeck CM, Zhang M, Tang W. Tetrahedron 2014; 70: 9281
    • 1c Shu X.-Z, Li X, Shu D, Huang S, Schienebeck CM, Zhou X, Robichaux PJ, Tang W. J. Am. Chem. Soc. 2012; 134: 5211
    • 1d Battiste MA, Pelphrey PM, Wright DL. Chem. Eur. J. 2006; 12: 3438
    • 1e Lautens M, Klute W, Tam W. Chem. Rev. 1996; 96: 49
    • 2a Zhou M.-B, Song R.-J, Wang C.-Y, Li J.-H. Angew. Chem. Int. Ed. 2013; 52: 10805
    • 2b Sham HL, Zhao C, Stewart KD, Betebenner DA, Lin S, Park CH, Kong XP, Rosenbrook W, Herrin T, Madigan D, Vasavanonda S, Lyons N, Molla A, Saldivar A, Marsh KC, McDonald E, Wideburg NE, Denissen JF, Robins T, Kempf DJ, Plattner JJ, Norbeck DW. J. Med. Chem. 1996; 39: 392
    • 2c McDonald IM, Black JW, Buck IM, Dunstone DJ, Griffin EP, Harper EA, Hull RA. D, Kalindjian SB, Lilley EJ, Linney ID, Pether MJ, Roberts SP, Shaxted ME, Spencer J, Steel KI. M, Sykes DA, Walker MK, Watt GF, Wright L, Wright PT, Xun W. J. Med. Chem. 2007; 50: 3101
    • 3a Wang S, An X.-D, Li S.-S, Liu X, Liu Q, Xiao J. Chem. Commun. 2018; 54: 13833
    • 3b Xie H.-P, Sun L, Wu B, Zhou Y.-G. J. Org. Chem. 2019; 84: 15498
    • 3c Schurgers B, Brigou B, Urbanczyk-Lipkowska Z, Tourwé D, Ballet S, De Proft F, Van Lommen G, Verniest G. Org. Lett. 2014; 16: 3712
    • 3d Van Otterlo WA. L, De Koning CB. Chem. Rev. 2009; 109: 3743
    • 3e van Assema SG. A, Ehlers AW, de Kanter FJ. J, Schakel M, Spek AL, Lutz M, Lammertsma K. Chem. Eur. J. 2006; 12: 4333
    • 3f Deiters A, Martin SF. Chem. Rev. 2004; 104: 2199
  • 4 El-Remaily MA. A, Elhady OM, Abdel-Raheem EM. M. J. Heterocycl. Chem. 2017; 54: 871
  • 5 Alexandre F.-R, Berecibar A, Wrigglesworth R, Perreux L, Guillon J, Léger J.-M, Thiéry V, Besson T. Tetrahedron 2005; 61: 8288
  • 6 Douchez A, Billard E, Hébert TE, Chatenet D, Lubell WD. J. Med. Chem. 2017; 60: 9838
    • 7a Lam H, Qureshi Z, Wegmann M, Lautens M. Angew. Chem. Int. Ed. 2018; 57: 16185
    • 7b Sun M, Ma C, Zhou S.-J, Lou S.-F, Xiao J, Jiao Y, Shi F. Angew. Chem. Int. Ed. 2019; 58: 8703
    • 7c Wang C.-S, Li T.-Z, Liu S.-J, Zhang Y.-C, Deng S, Jiao Y, Shi F. Chin. J. Chem. 2020; 38: 543
    • 7d Zhou S.-J, Sun M, Wang J.-Y, Yu X.-Y, Lu H, Zhang Y.-C, Shi F. Eur. J. Org. Chem. 2020; 4301
    • 7e Jiang F, Yuan F.-R, Jin L.-W, Mei G.-J, Shi F. ACS Catal. 2018; 8: 10234
    • 8a Zhou M.-B, Song R.-J, Wang C.-Y, Li J.-H. Angew. Chem. 2013; 125: 11005
    • 8b Majumdar KC. RSC Adv. 2011; 1: 1152
    • 8c Casadei MA, Galli C, Mandolini L. J. Am. Chem. Soc. 1984; 106: 1051
    • 8d Illuminati G, Mandolini L. Acc. Chem. Res. 1981; 14: 95
  • 9 Yin Z, He Y, Chiu P. Chem. Soc. Rev. 2018; 47: 8881
  • 10 Zheng Y, Tu L, Li N, Huang R, Feng T, Sun H, Li Z, Liu J. Adv. Synth. Catal. 2019; 361: 44
    • 11a Jong J.-AW, Bao X, Wang Q, Zhu J. Helv. Chim. Acta 2019; 102: e1900002
    • 11b Yang Q.-Q, Xiao C, Lu L.-Q, An J, Tan F, Li B.-J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 9137
    • 11c Zhang X, Pan Y, Liang P, Ma X, Jiao W, Shao H. Adv. Synth. Catal. 2019; 361: 5552
    • 12a Jiang S.-P, Lu W.-Q, Liu Z, Wang G.-W. J. Org. Chem. 2018; 83: 1959
    • 12b Li L.-Z, Wang C.-S, Guo W.-F, Mei G.-J, Shi F. J. Org. Chem. 2018; 83: 614
    • 12c Wang H.-Q, Ma W, Sun A, Sun X.-Y, Jiang C, Zhang Y.-C, Shi F. Org. Biomol. Chem. 2021; 19: 1334
    • 13a Long W, Chen S, Zhang X, Fang L, Wang Z. Tetrahedron 2018; 74: 6155
    • 13b Zhi Y, Zhao K, Shu T, Enders D. Synthesis 2016; 48: 238
    • 13c Wang L, Li S, Blümel M, Philipps AR, Wang A, Puttreddy R, Rissanen K, Enders D. Angew. Chem. Int. Ed. 2016; 55: 11110
    • 13d Jin Q, Zhang J, Jiang C, Zhang D, Gao M, Hu S. J. Org. Chem. 2018; 83: 8410
  • 14 Yang Q.-Q, Wang Q, An J, Chen J.-R, Lu L.-Q, Xiao W.-J. Chem. Eur. J. 2013; 19: 8401
  • 15 Lei L, Yao Y.-Y, Jiang L.-J, Lu X, Liang C, Mo D.-L. J. Org. Chem. 2020; 85: 3059
  • 16 Zhang X, Pan Y, Liang P, Pang L, Ma X, Jiao W, Shao H. Adv. Synth. Catal. 2018; 360: 3015
    • 17a Cheng X, Cao X, Zhou S.-J, Cai B.-G, He X.-K, Xuan J. Adv. Synth. Catal. 2019; 361: 1230
    • 17b Lopes SM. M, Cardoso AL, Lemos A, Pinho E Melo TM. V. D. Chem. Rev. 2018; 118: 11324
    • 17c Wang D, Lei Y, Wei Y, Shi M. Chem. Eur. J. 2014; 20: 15325
    • 17d Liu Z, Lou Z, Li Z, Wang G, Wang Z, Liu Y, Huang B, Xia S, Qin X, Zhang X, Dai Y. Chem. Commun. 2014; 50: 11046
    • 17e Li W, Jia Q, Du Z, Zhang K, Wang J. Chem. Eur. J. 2014; 20: 4559
    • 17f Li W, Wei J, Jia Q, Du Z, Zhang K, Wang J. Chem. Eur. J. 2014; 20: 6592
    • 17g Li E, Huang Y, Liang L, Xie P. Org. Lett. 2013; 15: 3138
    • 17h Gicquel M, Gomez C, Retailleau P, Voituriez A, Marinetti A. Org. Lett. 2013; 15: 4002
    • 17i Soeta T, Tamura K, Ukaji Y. Org. Lett. 2012; 14: 1226
    • 18a Yuvaraj P, Reddy BS. R. Tetrahedron Lett. 2014; 55: 806
    • 18b Hao W, Zhang T, Cai M. Tetrahedron 2013; 69: 9219
    • 18c Xiao Q, Sheng J, Ding Q, Wu J. Adv. Synth. Catal. 2013; 355: 2321
    • 18d Liu H, Liu G, Qiu G, Pu S, Wu J. Tetrahedron 2013; 69: 1476
    • 18e Sheng J, Guo Y, Wu J. Tetrahedron 2013; 69: 6495
    • 18f Yao L, Yu X, Mo C, Wu J. Org. Biomol. Chem. 2012; 10: 9447
    • 18g Ye C, Yu X, Qiu G, Wu J. RSC Adv. 2012; 2: 5961
    • 18h Chen Z, Gao L, Ye S, Ding Q, Wu J. Chem. Commun. 2012; 48: 3975
    • 18i Gao L, Ye S, Ding Q, Chen Z, Wu J. Tetrahedron 2012; 68: 2765
    • 18j Yu X, Ye S, Wu J. Adv. Synth. Catal. 2010; 352: 2050
    • 19a Cao X, Cheng X, Xuan J. Org. Lett. 2018; 20: 449
    • 19b Perreault C, Goudreau SR, Zimmer LE, Charette AB. Org. Lett. 2008; 10: 689
    • 20a Yuan C, Zhou L, Xia M, Sun Z, Wang D, Guo H. Org. Lett. 2016; 18: 5644
    • 20b Chen L, Yang GM, Wang J, Jia QF, Wei J, Du ZY. RSC Adv. 2015; 5: 76696
  • 21 Na R, Jing C, Xu Q, Jiang H, Wu X, Shi J, Zhong J, Wang M, Benitez D, Tkatchouk E, Goddard WA. III, Guo H, Kwon O. J. Am. Chem. Soc. 2011; 133: 13337
  • 22 Li Z, Li S, Kan T, Wang X, Xin X, Hou Y, Gong P. Adv. Synth. Catal. 2020; 362: 2626
  • 23 1,2,4-Triazepines 3aa–ra; General Procedure A 25 mL Schlenk flask was charged with the appropriate C,N-cyclic azomethine imine 1 (0.2 mmol), K2CO3 (0.4 mmol), DCM (3 mL), and the [o-(chloromethyl)aryl]sulfonamide 2 (0.2 mmol). The mixture was stirred vigorously at r.t. for 2–6 h until the arylsulfonamide 2 was completely consumed. The solvent was then removed under reduced pressure and the crude product was purified by flash column chromatography.
  • 24 8,14-Ditosyl-8,9,14,14a-tetrahydroquinazolino[4,3-b][1,3,4]benzotriazepine (3aa) White solid; yield: 105 mg (91%); mp 188.4–190.2 °C. 1H NMR (600 MHz, DMSO-d 6): δ = 7.81 (d, J = 8.2 Hz, 2 H), 7.59–7.55 (m, 1 H), 7.52 (d, J = 8.1 Hz, 2 H), 7.42–7.37 (m, 6 H), 7.36–7.34 (m, 2 H), 7.31–7.27 (m, 1 H), 6.92 (dd, J = 6.0, 2.9 Hz, 1 H), 6.79 (s, 1 H), 6.73 (d, J = 7.8 Hz, 1 H), 6.26 (s, 1 H), 4.62 (d, J = 12.6 Hz, 1 H), 3.98 (d, J = 12.5 Hz, 1 H), 2.44 (s, 3 H), 2.40 (s, 3 H). 13C NMR (151 MHz, DMSO-d 6): δ = 148.58, 145.73, 144.65, 138.63, 136.36, 133.81, 133.70, 132.64, 132.31, 131.76, 130.83, 130.59, 130.43, 130.41, 130.39, 128.40, 127.87, 127.37, 127.34, 125.68, 122.25, 72.49, 52.43, 21.53, 21.48. HRMS (ESI/Q-TOF): m/z [M + H]+ calcd for C29H27N4O4S2: 559.1468, found: 559.1471; [M + Na]+ calcd for C29H26N4NaO4S2: 581.1288; found: 581.1308.