Laryngorhinootologie 2022; 101(05): 383-389
DOI: 10.1055/a-1507-5492
Übersicht

Nahinfrarot-Sentinel-Diagnostik bei Kopf-Hals-Plattenepithelkarzinomen: eine systematische Übersicht

Near-infrared sentinel diagnostics in head and neck squamous cell carcinoma: a systematic review
Hals-Nasen-Ohrenklinik, Kopf- und Hals-Chirurgie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Deutschland
,
Hals-Nasen-Ohrenklinik, Kopf- und Hals-Chirurgie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Deutschland
,
Heinrich Iro
Hals-Nasen-Ohrenklinik, Kopf- und Hals-Chirurgie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Deutschland
,
Michael Koch
Hals-Nasen-Ohrenklinik, Kopf- und Hals-Chirurgie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Deutschland
› Institutsangaben

Zusammenfassung

Hintergrund Die Nahinfrarot-Fluoreszenzbildgebung (NIR) ist eine neue Technik zur intraoperativen Identifizierung von Sentinel-Lymphknoten (SLN). Sie hat in mehreren chirurgischen Fachgebieten vielversprechende Ergebnisse gezeigt. Dieser Artikel gibt einen Überblick über die aktuelle Studienlage der NIR-SLN-Diagnostik des Kopf-Hals-Malignoms.

Material und Methoden Systematische Literaturrecherche in folgenden Online-Datenbanken: PubMed, MEDLINE, Thompson Reuters Web of Science und SPIE nach den Suchbegriffen: sentinel node, sentinel node biopsy, head and neck squamous cell carcinoma, near-infrared imaging, indocyanine green, icg. Bewertung der wissenschaftlichen Relevanz der Arbeiten nach festgelegten Kriterien.

Ergebnisse Es wurden Arbeiten in Bezug auf die klinische Anwendung, die klinische Befunderhebung, die Identifikationsrate und die Falsch-Negativ-Rate analysiert. Die Identifikationsrate des SLN liegt bei 97–100 %, mit durchschnittlich 1,2–3,4 Fluoreszenz positiven Lymphknoten pro Untersuchung. Die Rate falsch-negativer Befunde variiert insgesamt zwischen 0 und 20 %.

Schlussfolgerungen In Zusammenschau der aktuell publizierten Ergebnisse verspricht die NIR-Bildgebung ein großes Potenzial, die Diagnostik des SLN bei Karzinomen im Bereich der Mundhöhle und des Pharynx zu verbessern. Vorteilhaft ist die einfache und schnelle Durchführung mit guter räumlicher Auflösung ohne Strahlenexposition.

Abstract

Background Near-infrared fluorescence (NIR) imaging is a new technique for intraoperative identification of sentinel lymph nodes (SLN). It has shown promising results in several surgical specialties. This article reviews the current study situation of NIR SLN diagnosis of head and neck malignancy.

Material and methods Systematic literature search in the following online databases: PubMed, MEDLINE, Thompson Reuters Web of Science, SPIE for the search terms: sentinel node, sentinel node biopsy, head and neck squamous cell carcinoma, near-infrared imaging, indocyanine green, icg. Evaluation of scientific relevance of papers according to established criteria.

Results Studies were analyzed in terms of clinical application, clinical reporting, identification rate, and false-negative rate. The identification rate of SLN is 97–100 %, with an average of 1.2–3.4 fluorescence positive lymph nodes per examination. The overall false-negative rate varies between 0 and 20 %.

Conclusions In the synopsis of the currently published results, NIR imaging promises the great potential to improve the diagnosis of SLN in carcinomas of the oral cavity and pharynx. A simple and fast procedure with high spatial resolution and without radiation exposure is beneficial.



Publikationsverlauf

Eingereicht: 26. Januar 2021

Angenommen: 10. Mai 2021

Artikel online veröffentlicht:
28. Mai 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Woolgar JA, Triantafyllou A, Lewis Jr JS. et al. Prognostic biological features in neck dissection specimens. Eur Arch Otorhinolaryngol 2013; 270: 1581-1592
  • 2 Coskun HH, Medina JE, Robbins KT. et al. Current philosophy in the surgical management of neck metastases for head and neck squamous cell carcinoma. Head Neck 2015; 37: 915-926
  • 3 Schilling C, Shaw R, Schache A. et al. Sentinel lymph node biopsy for oral squamous cell carcinoma. Where are we now?. Br J Oral Maxillofac Surg 2017; 55: 757-762
  • 4 Weiss MH, Harrison LB, Isaacs RS. Use of decision analysis in planning a management strategy for the stage N0 neck. Arch Otolaryngol Head Neck Surg 1994; 120: 699-702
  • 5 Kim JH, Byeon HK, Kim DH. et al. ICG-Guided Sentinel Lymph Node Sampling during Robotic Retroauricular Neck Dissection in cN0 Oral Cancer. Otolaryngol Head Neck Surg 2020; 162: 410-413
  • 6 Kitai T, Inomoto T, Miwa M. et al. Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer. Breast Cancer 2005; 12: 211-215
  • 7 Schols RM, Bouvy ND, van Dam RM. et al. Advanced intraoperative imaging methods for laparoscopic anatomy navigation: an overview. Surg Endosc 2013; 27: 1851-1859
  • 8 KleinJan GH, Karakullukçu B, Klop WMC. et al. Introducing navigation during melanoma-related sentinel lymph node procedures in the head-and-neck region. EJNMMI Res 2017; DOI: 10.1186/s13550017-0312-1.
  • 9 Schaafsma BE, Mieog JS, Hutteman M. et al. The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery. J Surg Oncol 2011; 104: 323-332
  • 10 Ntziachristos V, Ripoll J, Wang LV. et al. Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 2005; 23: 313-320
  • 11 van der Vorst JR, Schaafsma BE, Verbeek FP. et al. Near-infrared fluorescence sentinel lymph node mapping of the oral cavity in head and neck cancer patients. Oral Oncol 2013; 49: 15-19
  • 12 Tromberg BJ, Shah N, Lanning R. et al. Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy. Neoplasia 2000; 2: 26-40
  • 13 Lim YT, Kim S, Nakayama A. et al. Selection of quantum dot wavelengths for biomedical assays and imaging. Mol Imaging 2003; 2: 50-64
  • 14 Desmettre T, Devoisselle JM, Mordon S. Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. Surv Ophthalmol 2000; 45: 15-27
  • 15 Gioux S, Choi HS, Frangioni JV. Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation. Mol Imaging 2010; 9: 237-255
  • 16 Ressing M, Blettner M, Klug SJ. Systematische übersichtsarbeiten und metaanalysen – Teil 6 der serie zur bewertung wissenschaftlicher publikationen. Dtsch Arztebl Int 2009; 106: 456-463
  • 17 Zeng HC, Hu JL, Bai JW. et al. Detection of Sentinel Lymph Nodes with Near-Infrared Imaging in Malignancies. Mol Imaging Biol 2019; 21: 219-227
  • 18 Murer K, Huber GF, Haile S. et al. Comparison of morbidity between sentinel node biopsy and elective neck dissection for treatment of the n0 neck in patients with oral squamous cell carcinoma. Head Neck 2011; 33: 1260-1264
  • 19 Cochran AJ, Essner R, Rose DM. et al. Principles of sentinel lymph node identification: background and clinical implications. Langenbecks Arch Surg 2000; 385: 252-260
  • 20 Alex JC. The application of sentinel node radiolocalization to solid tumors of the head and neck: a 10-year experience. Laryngoscope 2004; 114: 2-19
  • 21 Agrawal A, Civantos FJ, Brumund KT. et al. [(99m)Tc]Tilmanocept Accurately Detects Sentinel Lymph Nodes and Predicts Node Pathology Status in Patients with Oral Squamous Cell Carcinoma of the Head and Neck: Results of a Phase III Multi-institutional Trial. Ann Surg Oncol 2015; 22: 3708-3715
  • 22 Kim JH, Byeon HK, Kim DH. et al. ICG-Guided Sentinel Lymph Node Sampling during Robotic Retroauricular Neck Dissection in cN0 Oral Cancer. Otolaryngol Head Neck Surg 2020; 162: 410-413
  • 23 Honda K, Ishiyama K, Suzuki S. et al. Sentinel Lymph Node Biopsy Using Preoperative Computed Tomographic Lymphography and Intraoperative Indocyanine Green Fluorescence Imaging in Patients With Localized Tongue Cancer. JAMA Otolaryngol Head Neck Surg 2019; 145: 735-740
  • 24 Sievert M, Goncalves M, Eckstein M. et al. Feasibility of sentinel lymph node detection by near-infrared endoscopy in squamous cell carcinoma of the oral cavity: a pilot study. Eur Rev Med Pharmacol Sc 2020; 24: 11620-11627
  • 25 van den Berg NS, Simon H, Kleinjan GH. et al. First-in-human evaluation of a hybrid modality that allows combined radio- and (near-infrared) fluorescence tracing during surgery. Eur J Nucl Med Mol Imaging 2015; 42: 1639-1647
  • 26 Chan JY, Tsang RK, Wong ST. et al. Indocyanine green fluorescence mapping of sentinel lymph node in patients with recurrent nasopharyngeal carcinoma after previous radiotherapy. Head Neck 2015; DOI: 10.1002/hed.24052.
  • 27 Chand M, Keller DS, Devoto L. et al. Furthering Precision in Sentinel Node Navigational Surgery for Oral Cancer: a Novel Triple Targeting System. J Fluoresc 2018; 28: 483-486
  • 28 Chow VL, Ng JC, Chan JY. et al. Robot-assisted real-time sentinel lymph node mapping in oral cavity cancer: preliminary experience. J Robot Surg 2020; DOI: 10.1007/s11701-020-01112-4.
  • 29 Araki K, Tomifuji M, Shiotani A. et al. Minimally invasive surgery for laryngopharyngeal cancer: Multicenter feasibility study of a combination strategy involving transoral surgery and real-time indocyanine green fluorescence-navigated sentinel node navigation surgery. Head Neck 2020; 42: 254-261
  • 30 Al-Dam A, Precht C, Barbe A. et al. Sensitivity and specificity of sentinel lymph node biopsy in patients with oral squamous cell carcinomas using indocyanine green fluorescence imaging. J Craniomaxillofac Surg 2018; 46: 1379-1384
  • 31 Peng H, Wang SJ, Niu X. et al. Sentinel node biopsy using indocyanine green in oral/oropharyngeal cancer. World J Surg Oncol 2015; DOI: 10.1186/s12957-015-0691-6.
  • 32 Nakamura T, Kogashiwa Y, Nagafuji H. et al. Validity of sentinel lymph node biopsy by ICG fluorescence for early head and neck cancer. Anticancer Res 2015; 35: 1669-1674
  • 33 Christensen A, Juhl K, Charabi B. et al. Feasibility of Real-Time Near-Infrared Fluorescence Tracer Imaging in Sentinel Node Biopsy for Oral Cavity Cancer Patients. Ann Surg Oncol 2016; 23: 565-572
  • 34 Liu M, Wang SJ, Yang X. et al. Diagnostic Efficacy of Sentinel Lymph Node Biopsy in Early Oral Squamous Cell Carcinoma: A Meta-Analysis of 66 Studies. PLoS One 2017; DOI: 10.1371/journal.pone.0170322.
  • 35 Kågedal Å, Margolin G, Held C. et al. A Novel Sentinel Lymph Node Approach in Oral Squamous Cell Carcinoma. Curr Pharm Des 2020; 26: 3834-3839
  • 36 Bredell MG. Sentinel lymph node mapping by indocyanin green fluorescence imaging in oropharyngeal cancer – preliminary experience. Head Neck Oncol 2010; DOI: 10.1186/1758-3284-2-31.
  • 37 Crane LM, Themelis G, Pleijhuis RG. et al. Intraoperative multispectral fluorescence imaging for the detection of the sentinel lymph node in cervical cancer: a novel concept. Mol Imaging Biol 2011; 13: 1043-1049
  • 38 Stoffels I, Leyh J, Pöppel T. et al. Evaluation of a radioactive and fluorescent hybrid tracer for sentinel lymph node biopsy in head and neck malignancies: prospective randomized clinical trial to compare ICG-(99m)Tc-nanocolloid hybrid tracer versus (99m)Tc-nanocolloid. Eur J Nucl Med Mol Imaging 2015; 42: 1631-1638
  • 39 Hope-Ross M, Yannuzzi LA, Gragoudas ES. et al. Adverse reactions due to indocyanine green. Ophthalmology 1994; 101: 529-533