Dtsch Med Wochenschr 2021; 146(02): 85-91
DOI: 10.1055/a-1202-3165
Dossier

Dyslipidämie bei Diabetes

Diabetic Dyslipidemia
Martin Merkel

Das erhöhte kardiovaskuläre Risiko bei Patienten mit Diabetes entsteht wesentlich durch die diabetische Dyslipidämie. In vielen Fällen ist diese zielwertgerecht therapierbar, sodass im Optimalfall das kardiovaskuläre Risiko allein hierdurch deutlich reduziert werden kann. Der Fokus dieses Beitrags liegt auf Pathogenese, Diagnostik und Therapiebesonderheiten der Fettstoffwechselstörungen bei Diabetes mellitus Typ 2.

Abstract

Diabetic dyslipidemia is a major cause of the increased cardiovascular risk in diabetes. This lipid disorder is characterized by increased plasma triglycerides, increased remnant particles of triglyceride-rich lipoproteins, small dense LDL particles and reduced HDL cholesterol. The main pathogenetic triggers are obesity and insulin resistance. In addition to lifestyle measures, statins, ezetimibe and eventually PCSK9 inhibitors are available to treat diabetic dyslipidemia and to reduce the cardiovascular risk. Fibrates and omega-3 fatty acids currently do not play a significant therapeutic role. A consistent and target-oriented therapy of diabetic dyslipidemia is a prerequisite for a cardiovascular risk reduction in patients with diabetes, which has been well proven in clinical studies.



Publikationsverlauf

Artikel online veröffentlicht:
19. Januar 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 International Diabetes Foundation (IDF). IDF Diabetes Atlas. 2017 Im Internet (Stand: 29.09.2019): 8th ed.. www.diabetesatlas.org
  • 2 Deutsche Diabetes Gesellschaft (DDG) und diabetesDE – Deutsche Diabetes-Hilfe. Deutscher Gesundheitsbericht Diabetes 2019. Mainz: Kirchheim & Co; 2019
  • 3 Kannel WB. Lipids, diabetes, and coronary heart disease: insights from the Framingham Study. Am Heart J 1985; 110: 1100-1107
  • 4 UKPDS investigators. UK Prospective Diabetes Study (UKPDS). XI: Biochemical risk factors in type 2 diabetic patients at diagnosis compared with age-matched normal subjects. Diabet Med 1994; 11: 534-544 . doi:10.1111/j.1464-5491.1994.tb02032.x
  • 5 Schramm TK, Gislason GH, Kober L. et al. Diabetes patients requiring glucose-lowering therapy and nondiabetics with a prior myocardial infarction carry the same cardiovascular risk: a population study of 3.3 million people. Circulation 2008; 117: 1945-1954
  • 6 Rawshani A, Franzen S, Sattar N. et al. Risk Factors, Mortality, and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med 2018; 379: 633-644
  • 7 Johansen CT, Kathiresan S, Hegele RA. Genetic determinants of plasma triglycerides. J Lipid Res 2011; 52: 189-206
  • 8 Merkel M, Müller-Wieland D, von Eckardstein A. Fettstoffwechsel. In: Blum HA, Müller-Wieland D. Klinische Pathophysiologie. Stuttgart: Georg Thieme; 2020
  • 9 Ginsberg HN, Zhang YL, Hernandez-Ono A. Regulation of plasma triglycerides in insulin resistance and diabetes. Arch Med Res 2005; 36: 232-240
  • 10 Lahdenpera S, Syvanne M, Kahri J. et al. Regulation of low-density lipoprotein particle size distribution in NIDDM and coronary disease: importance of serum triglycerides. Diabetologia 1996; 39: 453-461
  • 11 Hokanson JE, Austin MA. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. J Cardiovasc Risk 1996; 3: 213-219
  • 12 Nordestgaard BG, Benn M, Schnohr P. et al. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 2007; 298: 299-308
  • 13 Schunkert H, Konig IR, Kathiresan S. et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet 2011; 43: 333-338
  • 14 Do R, Willer CJ, Schmidt EM. et al. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat Genet 2013; 45: 1345-1352
  • 15 McNamara JR, Shah PK, Nakajima K. et al. Remnant-like particle (RLP) cholesterol is an independent cardiovascular disease risk factor in women: results from the Framingham Heart Study. Atherosclerosis 2001; 154: 229-236
  • 16 Lamarche B, Tchernof A, Moorjani S. et al. Small, dense low-density lipoprotein particles as a predictor of the risk of ischemic heart disease in men. Prospective results from the Quebec Cardiovascular Study. Circulation 1997; 95: 69-75
  • 17 Gordon T, Castelli WP, Hjortland MC. et al. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am J Med 1977; 62: 707-714
  • 18 Boekholdt SM, Arsenault BJ, Mora S. et al. Association of LDL cholesterol, non-HDL cholesterol, and apolipoprotein B levels with risk of cardiovascular events among patients treated with statins: a meta-analysis. JAMA 2012; 307: 1302-1309
  • 19 Mach F, Baigent C, Catapano AL. et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J 2020; 41: 111-188
  • 20 Bruckert E, Labreuche J, Deplanque D. et al. Fibrates effect on cardiovascular risk is greater in patients with high triglyceride levels or atherogenic dyslipidemia profile: a systematic review and meta-analysis. J Cardiovasc Pharmacol 2011; 57: 267-272
  • 21 Aung T, Halsey J, Kromhout D. et al. Associations of Omega-3 Fatty Acid Supplement Use With Cardiovascular Disease Risks: Meta-analysis of 10 Trials Involving 77917 Individuals. JAMA Cardiol 2018; 3: 225-234