Laryngorhinootologie 2020; 99(12): 853-862
DOI: 10.1055/a-1190-4173
Übersicht

Molekulare und funktionale Abklärung hereditärer Schwerhörigkeiten am Beispiel des SLC26A4-Gens

Molecular and functional testing in case of hereditary hearing loss associated with the SLC26A4 gene
Sebastian Roesch
1   Universitätsklinik für Hals-Nasen-Ohrenkrankheiten der Paracelsus Medizinischen Privatuniversität Salzburg, SALK, Salzburg, Austria
,
Emanuele Bernardinelli
2   Universitätsinstitut für Pharmakologie und Toxikologie der Paracelsus Medizinischen Privatuniversität Salzburg, Austria
,
Saskia Wortmann
3   Universitätsklinik für Kinder- und Jugendheilkunde der Paracelsus Medizinischen Privatuniversität Salzburg, SALK, Salzburg, Austria
,
Johannes A. Mayr
3   Universitätsklinik für Kinder- und Jugendheilkunde der Paracelsus Medizinischen Privatuniversität Salzburg, SALK, Salzburg, Austria
,
Ingrid Bader
4   Division für klinische Genetik, Universitätsklinik für Kinder- und Jugendheilkunde der Paracelsus Medizinischen Privatuniversität Salzburg, SALK, Salzburg, Austria
,
Gregor Schweighofer-Zwink
5   Universitätsklinik für Nuklearmedizin und Endokrinologie der Paracelsus Medizinischen Privatuniversität Salzburg, SALK, Salzburg, Austria
,
Gerd Rasp
1   Universitätsklinik für Hals-Nasen-Ohrenkrankheiten der Paracelsus Medizinischen Privatuniversität Salzburg, SALK, Salzburg, Austria
,
Silvia Dossena
2   Universitätsinstitut für Pharmakologie und Toxikologie der Paracelsus Medizinischen Privatuniversität Salzburg, Austria
› Author Affiliations

Zusammenfassung

Die in den vergangenen Jahren zunehmende Verfügbarkeit molekularer Untersuchungstechniken führt zu einer steigenden Anzahl diagnostizierter genetischer Varianten im Genom untersuchter Patienten. Am Beispiel der hereditären Innenohrschwerhörigkeit wird bei Betrachtung der Vielzahl publizierter Berichte über die mögliche Beteiligung einzelner Gene an der Pathogenese deutlich, welche Herausforderungen die Zunahme molekularer Informationen für die Interpretation mit sich bringt.

In dieser Übersichtsarbeit werden anhand des Beispiels des SLC26A4-Gens und den damit verbundenen Formen einer hereditären Innenohrschwerhörigkeit die derzeit vorhandenen Möglichkeiten einer systematischen Abklärung und Interpretation dargestellt. Neben einer Beschreibung der physiologischen Funktion des resultierenden Pendrin-Proteins werden molekulare Untersuchungsmöglichkeiten zur Beurteilung der Funktion im Fall von nachgewiesenen Genvarianten erläutert. Die im Rahmen eines primär wissenschaftlichen Ansatzes resultierenden Ergebnisse auf molekularer Ebene dienen im klinischen Alltag der Interpretation hinsichtlich des kausalen Zusammenhangs zwischen einer nachgewiesenen Genvariante (Genotyp) und der Innenohrschwerhörigkeit (Phänotyp). Schließlich wird auf die mögliche Notwendigkeit einer weiteren interdisziplinären Abklärung, z. B. mithilfe einer Perchlorat-Testung der Schilddrüse, sowie therapeutische Möglichkeiten eingegangen.

Abstract

Due to development of molecular techniques at hand, the number of genomic sequence variants detected in patient investigations is rising constantly. The number of potentially involved genes in hereditary hearing loss is rising simultaneously.

In this overview, current methods for diagnostic workup on a molecular and functional level for variants of the SLC26A4 gene are described. Based on the description of the physiological function of the resulting protein Pendrin, molecular investigations for interpretation of the function are explained. Based on these investigations, the potential clinical consequences of a variant may be predicted more precisely and simplify routine reporting of a proven genotype and a phenotype, at hand. Finally, subsequent clinical investigations necessary, such as perchlorate discharge test, as well as therapeutic options are discussed.



Publication History

Received: 01 August 2019

Accepted: 26 May 2020

Article published online:
11 December 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Oza AM, DiStefano MT, Hemphill SE. et al Expert specification of the ACMG/AMP variant interpretation guidelines for genetic hearing loss. Rehm HL, Berg JS, Plon SE, eds. Hum Mutat 2018; 39 (11) 1593-1613 . doi:10.1002/humu.23630
  • 2 Jasper KM, Jamshidi A, Reilly BK. Pediatric otolaryngology, molecular diagnosis of hereditary hearing loss: next-generation sequencing approach. Current Opinion in Otolaryngology & Head and Neck Surgery 2015; 23 (06) 480-484 . doi:10.1097/MOO.0000000000000208
  • 3 Alford RL, Arnos KS, Fox M. et al American College of Medical Genetics and Genomics guideline for the clinical evaluation and etiologic diagnosis of hearing loss. Genet Med 2014; 16 (04) 347-355 . doi:10.1038/gim.2014.2
  • 4 Boudewyns A, van den Ende J, Sommen M. et al Role of Targeted Next Generation Sequencing in the Etiological Work-Up of Congenitally Deaf Children. Otol Neurotol 2018; 39 (06) 732-738 . doi:10.1097/MAO.0000000000001847
  • 5 Shen J, Morton CC. Next-Generation Newborn Hearing Screening. In: Genetics of Deafness. Vol 20. Monographs in Human Genetics. Karger Publishers; 2016: 30-39 DOI: 10.1159/000444598
  • 6 Rehm HL. Disease-targeted sequencing: a cornerstone in the clinic. Nat Rev Genet 2013; 14 (04) 295-300 . doi:10.1038/nrg3463
  • 7 Tsukada K, Nishio SY, Hattori M. et al Ethnic-specific spectrum of GJB2 and SLC26A4 mutations: their origin and a literature review. Ann Otol Rhinol Laryngol 2015; 124 (Suppl. 01) 61S-76S . doi:10.1177/0003489415575060
  • 8 Rose J, Muskett JA, King KA. et al Hearing loss associated with enlarged vestibular aqueduct and zero or one mutant allele of SLC26A4. The Laryngoscope 2016; 136: 972 . doi:10.1002/lary.26418
  • 9 Wémeau JL, Kopp P. Pendred syndrome. Best Pract Res Clin Endocrinol Metab 2017; 31 (02) 213-224 . doi:10.1016/j.beem.2017.04.011
  • 10 Hilgert N, Smith RJH, Van Camp G. Forty-six genes causing nonsyndromic hearing impairment: Which ones should be analyzed in DNA diagnostics?. Mutation Research/Reviews in Mutation Research 2009; 681 (02) 189-196 . doi:10.1016/j.mrrev.2008.08.002
  • 11 Miyagawa M, Nishio SY, Usami SI. et al Mutation spectrum and genotype-phenotype correlation of hearing loss patients caused by SLC26A4 mutations in the Japanese: a large cohort study. J Hum Genet 2014; 59 (05) 262-268 . doi:10.1038/jhg.2014.12
  • 12 Roesch S, Bernardinelli E, Nofziger C. et al Functional Testing of SLC26A4 Variants-Clinical and Molecular Analysis of a Cohort with Enlarged Vestibular Aqueduct from Austria. Int J Mol Sci 2018; 19 (01) 209 . doi:10.3390/ijms19010209
  • 13 Wangemann P, Griffith AJ. Mouse Models Reveal the Role of Pendrin in the Inner Ear. In: The Role of Pendrin in Health and Disease. Vol 82. Springer; 2017: 7-22 DOI: 10.1007/978-3-319-43287-8_2
  • 14 Wangemann P, Itza EM, Albrecht B. et al Loss of KCNJ10 protein expression abolishes endocochlear potential and causes deafness in Pendred syndrome mouse model. BMC Med 2004; 2 (01) 532-515 . doi:10.1186/1741-7015-2-30
  • 15 Royaux IE, Belyantseva IA, Wu T. et al Localization and functional studies of pendrin in the mouse inner ear provide insight about the etiology of deafness in pendred syndrome. J Assoc Res Otolaryngol 2003; 4 (03) 394-404 . doi:10.1007/s10162-002-3052-4
  • 16 Møller MN, Kirkeby S, Vikeså J. et al Gene expression in the human endolymphatic sac: the solute carrier molecules in endolymphatic fluid homeostasis. Otol Neurotol 2015; 36 (05) 915-922 . doi:10.1097/MAO.0000000000000669
  • 17 Richards S, Aziz N, Bale S. et al Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine 2015; 17 (05) 405-423 . doi:10.1038/gim.2015.30
  • 18 Spenger J, Preisel M, Koch J. et al Next-Generation-Sequenzierung – Next-Generation-Qualität in der Pädiatrie. Pädiatrie & Pädologie 2018; 1-5 DOI: 10.1007/s00608-018-0627-9.
  • 19 King KA, Choi BY, Zalewski C. et al SLC26A4 genotype, but not cochlear radiologic structure, is correlated with hearing loss in ears with an enlarged vestibular aqueduct. Laryngoscope 2010; 120 (02) DOI: 10.1002/lary.20722.
  • 20 Chattaraj P, Reimold FR, Muskett JA. et al Use of SLC26A4Mutation Testing for Unilateral Enlargement of the Vestibular Aqueduct. JAMA Otolaryngol Head Neck Surg 2013; 139 (09) 907-907 . doi:10.1001/jamaoto.2013.4185
  • 21 Chattaraj P, Munjal T, Honda K. et al A common SLC26A4-linked haplotype underlying non-syndromic hearing loss with enlargement of the vestibular aqueduct. Journal of Medical Genetics 2017; 54 (10) 665-673 . doi:10.1136/jmedgenet-2017-104721
  • 22 Choi BY, Madeo AC, King KA. et al Segregation of enlarged vestibular aqueducts in families with non-diagnostic SLC26A4 genotypes. Journal of Medical Genetics 2009; 46 (12) 856-861 . doi:10.1136/jmg.2009.067892
  • 23 Shearer AE, Kolbe DL, Azaiez H. et al Copy number variants are a common cause of non-syndromic hearing loss. Genome Med 2014; 6 (05) 1-10 . doi:10.1186/gm554
  • 24 Vona B, Hofrichter MAH, Schröder J. et al Hereditary hearing loss SNP-microarray pilot study. BMC Research Notes 2018; 1-4 DOI: 10.1186/s13104-018-3466-7.
  • 25 Borck G, Roth C, Martiné U. et al Mutations in the PDS Gene in German Families with Pendred’s Syndrome: V138F Is a Founder Mutation. The Journal of Clinical Endocrinology & Metabolism 2003; 88 (06) 2916-2921 . doi:10.1210/jc.2002-021334
  • 26 Lek M, Karczewski KJ, Minikel EV. et al Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016; 536: 285-291 . doi:10.1038/nature19057
  • 27 Pera A, Dossena S, Rodighiero S. et al Functional assessment of allelic variants in the SLC26A4 gene involved in Pendred syndrome and nonsyndromic EVA. Proc Natl Acad Sci USA 2008; 105 (47) 18608-18613 . doi:10.1073/pnas.0805831105
  • 28 Kallel-Bouattour R, Belguith-Maalej S, Zouari-Bradai E. et al Intronic variants of SLC26A4 gene enhance splicing efficiency in hybrid minigene assay. Gene 2017; 620: 10-14 . doi:10.1016/j.gene.2017.03.043
  • 29 Galietta LJV, Haggie PM, Verkman AS. Green fluorescent protein‐based halide indicators with improved chloride and iodide affinities. FEBS Letters 2001; 499 (03) 220-224 . doi:10.1016/S0014-5793(01)02561-3
  • 30 Dossena S, Rodighiero S, Vezzoli V. et al Fast fluorometric method for measuring pendrin (SLC26A4) Cl-/I- transport activity. Cell Physiol Biochem 2006; 18 (01) 67-74 . doi:10.1159/000095164
  • 31 De Moraes VCS, Bernardinelli E. Reduction of Cellular Expression Levels Is a Common Feature of Functionally Affected Pendrin (SLC26A4) Protein Variants. Mol Med 2016; 22 (01) 1-13 . doi:10.2119/molmed.2015.00226
  • 32 Dossena S, Nofziger C, Tamma G. et al Molecular and functional characterization of human pendrin and its allelic variants. Cell Physiol Biochem 2011; 28 (03) 451-466 . doi:10.1159/000335107
  • 33 Dossena S, Bernardinelli E, Sharma AK. et al The Pendrin Polypeptide. In: The Role of Pendrin in Health and Disease. Vol 518. Springer: 2017: 187-220 DOI: 10.1007/978-3-319-43287-8_11
  • 34 Pryor SP, Madeo AC, Reynolds JC. et al SLC26A4/PDS genotype-phenotype correlation in hearing loss with enlargement of the vestibular aqueduct (EVA): evidence that Pendred syndrome and non-syndromic EVA are distinct clinical and genetic entities. Journal of Medical Genetics 2005; 42 (02) 159-165 . doi:10.1136/jmg.2004.024208
  • 35 Choi BY, Stewart AK, Madeo AC. et al Hypo-functional SLC26A4 variants associated with nonsyndromic hearing loss and enlargement of the vestibular aqueduct: genotype-phenotype correlation or coincidental polymorphisms?. Hum Mutat 2009; 30 (04) 599-608 . doi:10.1002/humu.20884
  • 36 Campbell C, Cucci RA, Prasad S. et al Pendred syndrome, DFNB4, and PDS/SLC26A4 identification of eight novel mutations and possible genotype-phenotype correlations. Hum Mutat 2001; 17 (05) 403-411 . doi:10.1002/humu.1116
  • 37 peds AAOPDDO11, 2007. Position Statement: Principles and Guidelines for Early Hearing: Detection and Intervention Programs. Pediatrics 2007; 120 (04) 898-921 DOI: PMid:17908777.
  • 38 Korver AMH, Smith RJH, Van Camp G. et al Congenital hearing loss. Nat Rev Dis Primers 2017; 3: 16094-16137 . doi:10.1038/nrdp.2016.94
  • 39 Mey K, Bille M, Rye Rasmussen SH. et al The Natural History of Hearing Loss in Pendred Syndrome and Non-Syndromic Enlarged Vestibular Aqueduct. Otology & Neurotology 2019; 40 (03) e178-e185 . doi:10.1097/MAO.0000000000002140
  • 40 Jonard L, Niasme-Grare M, Bonnet C. et al Screening of SLC26A4, FOXI1 and KCNJ10 genes in unilateral hearing impairment with ipsilateral enlarged vestibular aqueduct. International Journal of Pediatric Otorhinolaryngology 2010; 74 (09) 1049-1053 . doi:10.1016/j.ijporl.2010.06.002
  • 41 Noordman BJ, van Beeck Calkoen E, Witte B. et al Prognostic Factors for Sudden Drops in Hearing Level After Minor Head Injury in Patients With an Enlarged Vestibular Aqueduct: A Meta-analysis. Otol Neurotol 2015; 36 (01) 4-11 . doi:10.1097/MAO.0000000000000659
  • 42 Ladsous M, Vlaeminck-Guillem V, Dumur V. et al Analysis of the thyroid phenotype in 42 patients with Pendred syndrome and nonsyndromic enlargement of the vestibular aqueduct. Thyroid 2014; 24 (04) 639-648 . doi:10.1089/thy.2013.0164
  • 43 Hahn K, Fischer S. Der Depletionstest mit 123Iod zur Diagnose des Pendred-Syndroms bei Kindern. Nuklearmediziner 2009; 32 (01) 17-18 . doi:10.1055/s-0028-1119389
  • 44 Reardon W, Coffey R, Chowdhury T. et al Prevalence, age of onset, and natural history of thyroid disease in Pendred syndrome. Journal of Medical Genetics 1999; 36 (08) 595-598 . doi:10.1136/jmg.36.8.595
  • 45 Eppsteiner RW, Shearer AE, Hildebrand MS. et al Prediction of cochlear implant performance by genetic mutation: The spiral ganglion hypothesis. Hearing Research 2012; 292 (01) 51-58 . doi:10.1016/j.heares.2012.08.007
  • 46 Park JH, Kim AR, Han JH. et al Outcome of Cochlear Implantation in Prelingually Deafened Children According to Molecular Genetic Etiology. Ear Hear 2017; 38 (05) e316-e324 . doi:10.1097/AUD.0000000000000437
  • 47 Shearer AE, Eppsteiner RW, Frees K. et al Genetic variants in the peripheral auditory system significantly affect adult cochlear implant performance. Hearing Research 2017; 348: 138-142 . doi:10.1016/j.heares.2017.02.008
  • 48 Wu C-M, Ko H-C, Tsou Y-T. et al Long-Term Cochlear Implant Outcomes in Children with GJB2 and SLC26A4 Mutations. PLoS ONE 2015; 10 (09) e0138575 . doi:10.1371/journal.pone.0138575
  • 49 Moser T. Molekulares Verstehen des Hörens – Was ändert sich für den Patienten?. Laryngorhinootologie 2018; 97 (Suppl. 01) S1-S9 . doi:10.1055/s-0043-121595