Subscribe to RSS
DOI: 10.1055/a-1169-0990
DTI in der Diagnostik der zervikalen Myelopathie
Diffusion Tensor Imaging (DTI) in degenerative cervical myelopathyZusammenfassung
Die degenerative zervikale Myelopathie (DCM) ist die häufigste Form der Rückenmarksaffektion im Erwachsenenalter. Die zugrundeliegenden pathophysiologischen Veränderungen sind komplex und eine operative Therapie ist in aller Regel spätestens dann notwendig, wenn relevante klinische Symptome einer stenosebedingten Rückenmarkskompression vorliegen. Für die Planung der Operation ist eine akkurate bildgebende Diagnostik essenziell. Diese soll dabei helfen, die zur klinischen Symptomatik beitragenden Wirbelsäulensegmente zu identifizieren.
Die konventionelle Magnetresonanztomografie (MRT) ist das heutzutage am häufigsten angewendete bildgebende Verfahren bei DCM, da sich v. a. T2-gewichtete MRT-Sequenzen hervorragend für die morphologische Beurteilung der Rückenmarkskompression und die Identifikation einer Myelomalazie („Myelopathiezeichen“) eignen. Insbesondere bei multisegmentalen degenerativen Veränderungen kann die Grenze der diagnostischen Aussagekraft des MRTs jedoch schnell erreicht werden.
Die Diffusion Tensor Bildgebung (diffusion tensor imaging, DTI) ist eine auf der MRT basierende, neuartige Untersuchungsmodalität, die auf der Messung der Diffusionseffekte von Wassermolekülen auf zellulärer Ebene basiert und eine Beurteilung der Integrität der weißen Rückenmarkssubstanz ermöglicht. Die beiden wichtigsten DTI-Größen, FA (fraktionelle Anisotropie) und ADC (apparent diffusion coefficient), stellen Surrogatparameter für das Ausmaß der strukturellen Myelonschädigung dar und zeigen Unterschiede zwischen DCM-Patienten und gesunden Probanden. Ein Vorteil dieser Technik könnte in einer sensitiven und frühen Detektion einer Rückenmarksschädigung liegen, zudem ist die Nutzung als prognostischer Marker oder bei der Operationsplanung denkbar.
Unser Artikel beschäftigt sich mit den Einsatzmöglichkeiten des DTI bei der zervikalen Myelopathie und gibt einen Ausblick auf mögliche zukünftige Entwicklungen.
Abstract
Degenerative cervical myelopathy (DCM) represents the most common spinal cord disorder in adults. The underlying pathophysiology is complex and surgery is usually recommended when patients develop clinical signs of spinal cord compression. Accurate imaging is crucial for planning of surgical decompression to keep the surgical trauma as minimal as possible without leaving stenotic levels contributing to myelopathy untreated.
Conventional magnetic resonance imaging (MRI) is the most widely used imaging modality for DCM evaluation, since especially T2-weighted sequences allow for morphological assessment of both compression of and signal changes within the spinal cord. However, conventional MRI is limited when it comes to precise grading of stenosis severity, extent of spinal cord compression and assessment of microstructural damage, particularly in multilevel pathologies.
Diffusion tensor imaging (DTI) is a relatively new MRI-based imaging modality that allows for assessment of white matter integrity by measuring diffusion effects of water molecules. The main DTI indices, fractional anisotropy (FA) and apparent diffusion coefficient (ADC), are surrogate measures for the degree of structural impairment of the spinal cord and show differences between healthy controls and DCM patients. The potential advantage of DTI is to show impairment of spinal cord integrity very sensitively and at an early stage of the disease. Additionally, DTI indices can perspectively be used to predict surgical outcome and might also be helpful in surgical planning.
We illustrate the diagnostic potential of DTI for DCM assessment and give an outlook on future developments.
Publication History
Article published online:
29 October 2020
© 2020. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literaturverzeichnis
- 1 Tetreault L, Goldstein CL, Arnold P. et al. Degenerative Cervical Myelopathy: A Spectrum of Related Disorders Affecting the Aging Spine. Neurosurgery 2015; 77 (Suppl. 04) S51-67 DOI: 10.1227/NEU.0000000000000951.
- 2 Vedantam A, Jonathan A, Rajshekhar V. Association of magnetic resonance imaging signal changes and outcome prediction after surgery for cervical spondylotic myelopathy. J Neurosurg Spine 2011; 15: 660-666 DOI: 10.3171/2011.8.SPINE11452.
- 3 Ohshio I, Hatayama A, Kaneda K. et al. Correlation between histopathologic features and magnetic resonance images of spinal cord lesions. Spine 1993; 18: 1140-1149 DOI: 10.1097/00007632-199307000-00005.
- 4 Le Bihan D. Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 2003; 4: 469-480 DOI: 10.1038/nrn1119.
- 5 Banaszek A, Bladowska J, Podgórski P. et al. Role of Diffusion Tensor MR Imaging in Degenerative Cervical Spine Disease: A Review of the Literature. Clin Neuroradiol 2016; 26: 265-276 DOI: 10.1007/s00062-015-0467-y.
- 6 Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 2006; 51: 527-539 DOI: 10.1016/j.neuron.2006.08.012.
- 7 Facon D, Ozanne A, Fillard P. et al. MR diffusion tensor imaging and fiber tracking in spinal cord compression. AJNR Am J Neuroradiol 2005; 26: 1587-1594
- 8 Jones JGA, Cen SY, Lebel RM. et al. Diffusion tensor imaging correlates with the clinical assessment of disease severity in cervical spondylotic myelopathy and predicts outcome following surgery. AJNR Am J Neuroradiol 2013; 34: 471-478 DOI: 10.3174/ajnr.A3199.
- 9 Kara B, Celik A, Karadereler S. et al. The role of DTI in early detection of cervical spondylotic myelopathy: A preliminary study with 3-T MRI. Neuroradiology 2011; 53: 609-616 DOI: 10.1007/s00234-011-0844-4.
- 10 Wang KY, Idowu O, Thompson CB. et al. Tract-Specific Diffusion Tensor Imaging in Cervical Spondylotic Myelopathy Before and After Decompressive Spinal Surgery: Preliminary Results. Clin Neuroradiol 2017; 27: 61-69 DOI: 10.1007/s00062-015-0418-7.
- 11 Ito T, Oyanagi K, Takahashi H. et al. Cervical Spondylotic Myelopathy. Spine 1996; 21: 827-833 DOI: 10.1097/00007632-199604010-00010.
- 12 Karadimas SK, Erwin WM, Ely CG. et al. Pathophysiology and Natural History of Cervical Spondylotic Myelopathy. Spine 2013; 38: S21-S36 DOI: 10.1097/BRS.0b013e3182a7f2c3.
- 13 Faiss JH, Schroth G, Grodd W. et al. Central spinal cord lesions in stenosis of the cervical canal. Neuroradiology 1990; 32: 117-123 DOI: 10.1007/BF00588561.
- 14 Sliwa JA, Maclean IC. Ischemic myelopathy: A review of spinal vasculature and related clinical syndromes. Archives of Physical Medicine and Rehabilitation 1992; 73: 365-372 DOI: 10.1016/0003-9993(92)90011-K.
- 15 Wei L-F, Wang S-S, Zheng Z-C. et al. Analysis of the diffusion tensor imaging parameters of a normal cervical spinal cord in a healthy population. The Journal of Spinal Cord Medicine 2017; 40: 338-345 DOI: 10.1080/10790268.2016.1244905.
- 16 Keřkovský M, Bednařík J, Jurová B. et al. Spinal Cord MR Diffusion Properties in Patients with Degenerative Cervical Cord Compression. J Neuroimaging 2017; 27: 149-157 DOI: 10.1111/jon.12372.
- 17 Ellingson BM, Salamon N, Holly LT. Advances in MR imaging for cervical spondylotic myelopathy. Eur Spine J 2015; 24 (Suppl. 02) 197-208 DOI: 10.1007/s00586-013-2915-1.
- 18 Cheung MM, Li DTH, Hui ES. et al. In vivo diffusion tensor imaging of chronic spinal cord compression in rat model. Conf Proc IEEE Eng Med Biol Soc 2009; 2009: 2715-2718 DOI: 10.1109/IEMBS.2009.5333389.
- 19 Rajasekaran S, Yerramshetty JS, Chittode VS. et al. The assessment of neuronal status in normal and cervical spondylotic myelopathy using diffusion tensor imaging. Spine 2014; 39: 1183-1189 DOI: 10.1097/BRS.0000000000000369.
- 20 Guan X, Fan G, Wu X. et al. Diffusion tensor imaging studies of cervical spondylotic myelopathy: A systemic review and meta-analysis. PLoS ONE 2015; 10: e0117707 DOI: 10.1371/journal.pone.0117707.
- 21 Mamata H, Jolesz FA, Maier SE. Apparent diffusion coefficient and fractional anisotropy in spinal cord: Age and cervical spondylosis-related changes. J Magn Reson Imaging 2005; 22: 38-43 DOI: 10.1002/jmri.20357.
- 22 Hori M, Okubo T, Aoki S. et al. Line scan diffusion tensor MRI at low magnetic field strength: Feasibility study of cervical spondylotic myelopathy in an early clinical stage. J Magn Reson Imaging 2006; 23 (02) 183-188 DOI: 10.1002/jmri.20488.
- 23 Demir A, Ries M, Moonen CTW. et al. Diffusion-weighted MR imaging with apparent diffusion coefficient and apparent diffusion tensor maps in cervical spondylotic myelopathy. Radiology 2003; 229: 37-43 DOI: 10.1148/radiol.2291020658.
- 24 Yang Y-M, Yoo W-K, Yoo JH. et al. The functional relevance of diffusion tensor imaging in comparison to conventional MRI in patients with cervical compressive myelopathy. Skeletal Radiol 2017; 46: 1477-1486 DOI: 10.1007/s00256-017-2713-7.
- 25 Nukala M, Abraham J, Khandige G. et al. Efficacy of diffusion tensor imaging in identification of degenerative cervical spondylotic myelopathy. Eur J Radiol Open 2019; 6: 16-23 DOI: 10.1016/j.ejro.2018.08.006.
- 26 Schöller K, Siller S, Brem C. et al. Diffusion Tensor Imaging for Surgical Planning in Patients with Cervical Spondylotic Myelopathy. J Neurol Surg A Cent Eur Neurosurg 2020; 81: 1-9 DOI: 10.1055/s-0039-1691822.
- 27 Wen CY, Cui JL, Liu HS. et al. Is diffusion anisotropy a biomarker for disease severity and surgical prognosis of cervical spondylotic myelopathy?. Radiology 2014; 270: 197-204 DOI: 10.1148/radiol.13121885.
- 28 Bhosale S, Ingale P, Srivastava S. et al. Diffusion tensor imaging as an additional postoperative prognostic predictor factor in cervical myelopathy patients: An observational study. J Craniovertebr Junction Spine 2019; 10: 10-13 DOI: 10.4103/jcvjs.JCVJS_77_18.
- 29 Rindler RS, Chokshi FH, Malcolm JG. et al. Spinal Diffusion Tensor Imaging in Evaluation of Preoperative and Postoperative Severity of Cervical Spondylotic Myelopathy: Systematic Review of Literature. World Neurosurg 2017; 99: 150-158 DOI: 10.1016/j.wneu.2016.11.141.
- 30 Naganawa T, Miyamoto K, Ogura H. et al. Comparison of magnetic resonance imaging and computed tomogram-myelography for evaluation of cross sections of cervical spinal morphology. Spine 2011; 36: 50-56 DOI: 10.1097/BRS.0b013e3181cb469c.
- 31 Stafira JS, Sonnad JR, Yuh WTC. et al. Qualitative assessment of cervical spinal stenosis: Observer variability on CT and MR images. AJNR Am J Neuroradiol 2003; 24: 766-769
- 32 Reul J, Gievers B, Weis J. et al. Assessment of the narrow cervical spinal canal: A prospective comparison of MRI, myelography and CT-myelography. Neuroradiology 1995; 37 (03) 187-191 DOI: 10.1007/bf01578255.
- 33 Shafaie FF, Wippold FJ, Gado M t al. Comparison of computed tomography myelography and magnetic resonance imaging in the evaluation of cervical spondylotic myelopathy and radiculopathy. Spine 1999; 24: 1781-1785 DOI: 10.1097/00007632-199909010-00006.
- 34 Song K-J, Choi B-W, Kim G-H. et al. Clinical usefulness of CT-myelogram comparing with the MRI in degenerative cervical spinal disorders: Is CTM still useful for primary diagnostic tool?. J Spinal Disord Tech 2009; 22: 353-357 DOI: 10.1097/BSD.0b013e31817df78e.
- 35 Samii M, Völkening D, Sepehrnia A. et al. Surgical treatment of myeloradiculopathy in cervical spondylosis. A report on 438 operations. Neurosurg Rev 1989; 12: 285-290 DOI: 10.1007/BF01780841.
- 36 Westermaier T, Doerr C, Stetter C. et al. Influence of Myelography and Postmyelographic CT on Therapeutic Decisions in Degenerative Diseases of the Cervical Spine. Clin Spine Surg 2017; 30: E656-E661 DOI: 10.1097/BSD.0000000000000344.
- 37 Toktas ZO, Tanrıkulu B, Koban O. et al. Diffusion tensor imaging of cervical spinal cord: A quantitative diagnostic tool in cervical spondylotic myelopathy. J Craniovertebr Junction Spine 2016; 7: 26-30 DOI: 10.4103/0974-8237.176617.
- 38 Ying J, Zhou X, Zhu M. et al. The Contribution of Diffusion Tensor Imaging to Quantitative Assessment on Multilevel Cervical Spondylotic Myelopathy. Eur Neurol 2016; 75: 67-74 DOI: 10.1159/000443270.
- 39 Schatlo B, Remonda L, Gruber P. et al. Cervical Spine Prospective Feasibility Study: Dynamic Flexion-Extension Diffusion-Tensor Weighted Magnetic Resonance Imaging. Clin Neuroradiol 2019; 29: 523-532 DOI: 10.1007/s00062-018-0686-0.
- 40 Martin AR, De Leener B, Cohen-Adad J. et al. Can microstructural MRI detect subclinical tissue injury in subjects with asymptomatic cervical spinal cord compression? A prospective cohort study. BMJ Open 2018; 8: e019809 DOI: 10.1136/bmjopen-2017-019809.
- 41 Jin R, Luk KD, Cheung JPY. et al. Prognosis of cervical myelopathy based on diffusion tensor imaging with artificial intelligence methods. NMR Biomed 2019; 32: e4114 DOI: 10.1002/nbm.4114.
- 42 Wang S, Hu Y, Shen Y. et al. Classification of Diffusion Tensor Metrics for the Diagnosis of a Myelopathic Cord Using Machine Learning. Int J Neur Syst 2018; 28: 1750036 DOI: 10.1142/S0129065717500368.