Klin Monbl Augenheilkd 2019; 236(09): 1081-1090
DOI: 10.1055/a-0972-9993
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Nahrungsergänzungsmittel und „Lifestyle“

Dietary Supplements and “Lifestyle”
Deborah Christof
Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Regensburg
,
Maria Andreea Gamulescu
Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Regensburg
› Author Affiliations
Further Information

Publication History

eingereicht 03 April 2019

akzeptiert 03 June 2019

Publication Date:
11 September 2019 (online)

Zusammenfassung

Aktuell ist eine Therapie der nicht exsudativen altersabhängigen Makuladegeneration (AMD) – im Gegensatz zu der exsudativen Form – nicht möglich. Eine präventive Wirkung und ein verlangsamtes Fortschreiten der Erkrankung erhoffen sich viele Betroffene von den sich auf dem Markt befindenden Nahrungsergänzungsmitteln. Die darin enthaltenen Stoffe sollen das oxidative Milieu im Bereich der äußeren Netzhaut reduzieren und so den Zellschaden und damit die Progression der AMD verlangsamen. Die ARED-Studien (ARED: Age-Related Eye Disease) untersuchten bestimmte dieser Nahrungsergänzungsmittel auf ihre Wirksamkeit, das Risiko des Fortschreitens der AMD in die Spätformen zu vermindern. Sie sind die einzigen interventionellen groß angelegten, prospektiven, randomisierten und kontrollierten klinischen Studien und werden immer wieder als Basis für die Nahrungsergänzung bei der AMD herangezogen. In diesem Artikel soll die Rationale für die Verwendung bestimmter Inhaltsstoffe der AREDS-Nahrungsergänzungsmittel besprochen und die Ergebnisse der ARED-Studien kritisch beleuchtet werden. Weiterhin soll der moderne Begriff des „Lifestyle“ im Kontext der AMD als weitere Möglichkeit der Einflussnahme jedes Einzelnen auf die Progression der Erkrankung thematisiert und diskutiert werden.

Abstract

Currently, for non-exudative age-related macular degeneration (AMD), therapy is not possible–in contrast to the exudative form. Many patients hope for a preventive effect and a slower progression of the disease from the dietary supplements on the market. The substances contained in them are supposed to reduce the oxidative environment in the outer retina and, thereby, slow down the cell damage and the progression of AMD. The Age-Related Eye Disease Studies (AREDS) examined certain supplements for their effectiveness in reducing the risk of AMD progression. They are the only interventional large-scale, prospective, randomized and controlled clinical trials and are repeatedly used as the basis for dietary supplementation in AMD. This article discusses the rationale for the use of certain ingredients of AREDS supplements and critically examines the results of AREDS. Furthermore, the modern term “lifestyle” will be discussed in the context of AMD as a possibility to influence the progression of this disease.

 
  • Literatur

  • 1 [Anonym] Richtlinie 2002/46/EG des Europäischen Parlaments und des Rates vom 10. Juni 2002 zur Angleichung der Rechtsvorschriften der Mitgliedstaaten über Nahrungsergänzungsmittel (Text von Bedeutung für den EWR). Amtsblatt Nr. L183 S. 0051–0057 (12/07/2002). Im Internet: https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX:%2032002L0046%23document1 Stand: 08.08.2019
  • 2 Young RW. Pathophysiology of age-related macular degeneration. Surv Ophthalmol 1987; 31: 291-306
  • 3 Blasiak J, Petrovski G, Veréb Z. et al. Oxidative stress, hypoxia, and autophagy in the neovascular processes of age-related macular degeneration. Biomed Res Int 2014; 2014: 768026 doi:10.1155/2014/768026
  • 4 Cai J, Nelson KC, Wu M. et al. Oxidative damage and protection of the RPE. Prog Retin Eye Res 2000; 19: 205-221
  • 5 Tomada I, Andrade JP. Science-based anti-ageing nutritional Recommendations. In: Neves D. ed. Anti-ageing Nutrients Evidence-based Prevention of Age-associated Diseases. Oxford, UK: John Wiley & Sons; 2015: 335-390
  • 6 Carneiro A. Nutrition and the ageing Eye. In: Neves D. ed. Anti-ageing Nutrients Evidence-based Prevention of Age-related Diseases. Oxford, UK: John Wiley & Sons; 2015: 277-297
  • 7 Ugarte M, Osborne NN, Brown LA. et al. Iron, zinc, and copper in retinal physiology and disease. Surv Ophthalmol 2013; 58: 585-609
  • 8 Carneiro A, Andrade JP. Nutritional and lifestyle interventions for age-related macular degeneration: a review. Oxid Med Cell Longev 2017; 2017: 6469138 doi:10.1155/2017/6469138
  • 9 Ha KN, Chen Y, Cai J. et al. Increased glutathione synthesis through an ARE-Nrf2-dependent pathway by zinc in the RPE: implication for protection against oxidative stress. Invest Ophthalmol Vis Sci 2006; 47: 2709-2715
  • 10 Awh CC, Hawken S, Zanke BW. Treatment response to antioxidants and zinc based on CFH and ARMS2 genetic risk allele number in the age-related eye disease study. Ophthalmology 2015; 122: 162-169
  • 11 Organisciak D, Wong P, Rapp C. et al. Light-induced retinal degeneration is prevented by zinc, a component in the age-related eye disease study formulation. Photochem Photobiol 2012; 88: 1396-1407 doi:10.1111/j.1751-1097.2012.01134.x
  • 12 Chen H, Liu B, Lukas TJ. et al. Changes in iron-regulatory proteins in the aged rodent neural retina. Neurobiol Aging 2009; 30: 1865-1876
  • 13 Zareba M, Szewczyk G, Sarna T. et al. Effects of photodegradation on the physical and antioxidant properties of melanosomes isolated from retinal pigment epithelium. Photochem Photobiol 2006; 82: 1024-1029
  • 14 Wang Z, Dillon J, Gaillard ER. Antioxidant properties of melanin in retinal pigment epithelial cells. Photochem Photobiol 2006; 82: 474-479
  • 15 [Anonymous] Antioxidant status and neovascular age-related macular degeneration. Eye Disease Case-Control Study Group. Arch Ophthalmol 1993; 111: 104-109
  • 16 Dilley R, McConnell D. Alpha-tocopherol in the retinal outer segment of bovine eyes. J Membr Biol 1970; 2: 317-323
  • 17 Delcourt C, Cristol JP, Tessier F. et al. Age-related macular degeneration and antioxidant status in the POLA study. POLA Study Group. Pathologies Oculaires Liées à lʼAge. Arch Ophthalmol 1999; 117: 1384-1390
  • 18 Merle BM, Silver RE, Rosner B. et al. Dietary folate, B vitamins, genetic susceptibility and progression to advanced nonexudative age-related macular degeneration with geographic atrophy: a prospective cohort study. Am J Clin Nutr 2016; 103: 1135-1144
  • 19 Hong T, Flood V, Rochtchina E. et al. Adherence to dietary guidelines and the 10-year cumulative incidence of visual impairment: the Blue Mountains Eye Study. Am J Ophthalmol 2014; 158: 302-308 doi:10.1016/j.ajo.2014.05.011
  • 20 Burton G, Ingold K. Beta-carotene: an unusual type of lipid antioxidant. Science 1984; 224: 569-573
  • 21 Landrum JT, Bone RA. Lutein, zeaxanthin, and the macular pigment. Arch Biochem Biophys 2001; 385: 28-40
  • 22 Seddon JM. Nutrition and age-related eye disease. Vitamin Nutr Info Serv Backgr 1999; 2: 1-10
  • 23 [Anonymous] Risk Factors for age-related macular degeneration. The Eye Disease Case-Control Study Group. Arch Ophthalmol 1992; 110: 1701-1708
  • 24 Bone RA, Landrum JT, Fernandez L. et al. Analysis of the macular pigment by HPLC: retinal distribution and age study. Invest Ophthalmol Vis Sci 1988; 29: 843-849
  • 25 Sommerburg O, Siems WG, Hurst JS. et al. Lutein and zeaxanthin are associated with photoreceptors in the human retina. Curr Eye Res 1999; 19: 491-495
  • 26 Handelman GJ, Dratz EA, Reay CC. et al. Carotenoids in the human macula and whole retina. Invest Ophthalmol Vis Sci 1988; 29: 850-855
  • 27 Calder PC. Polyunsaturated fatty acids and inflammatory processes: new twists in an old tale. Biochimie 2009; 91: 791-795
  • 28 SanGiovanni JP, Chew EY. The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog Retin Eye Res 2005; 24: 87-138
  • 29 Querques G, Merle BMJ, Pumariega NM. et al. Dynamic drusen remodelling in participants of the nutritional AMD treatment-2 (NAT-2) randomized trial. PLoS One 2016; 11: e0149219
  • 30 Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol 2001; 119: 1417-1436
  • 31 Chew EY, Clemons TE, Agrón E. et al. Long-term effects of vitamins C and E, β-carotene, and zinc on age-related macular degeneration: AREDS Report No. 35. Ophthalmology 2013; 120: 1604-1611
  • 32 Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N Engl J Med 1994; 330: 1029-1035
  • 33 Omenn GS, Goodman GE, Thornquist MD. et al. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med 1996; 334: 1150-1155
  • 34 Wang Y, Illingworth DR, Connor SL. et al. Competitive inhibition of carotenoid transport and tissue concentrations by high dose supplements of lutein, zeaxanthin and beta-carotene. Eur J Nutr 2010; 49: 327-336
  • 35 Awh CC, Lane AM, Hawken S. et al. CFH and ARMS2 genetic polymorphisms predict response to antioxidants and zinc in patients with age-related macular degeneration. Ophthalmology 2013; 120: 2317-2323
  • 36 Assel MJ, Li F, Wang Y. et al. Genetic polymorphisms of CFH and ARMS2 do not predict response to antioxidants and zinc in patients with age-related macular degeneration: independent statistical evaluations of data from the Age-Related Eye Disease Study. Ophthalmology 2018; 125: 391-397 doi:10.1016/j.ophtha.2017.09.008
  • 37 Vavvas DG, Small KW, Awh CC. et al. CFH and ARMS2 genetic risk determines progression to neovascular age-related macular degeneration after antioxidant and zinc supplementation. Proc Natl Acad Sci U S A 2018; 115: E696-E704
  • 38 Evans JR, Lawrenson JG. Antioxidant vitamin and mineral supplements for preventing age-related macular degeneration. Cochrane Database Syst Rev 2017; (07) CD000253 DOI: 10.1002/14651858.CD000253.pub4.
  • 39 Gorusupudi A, Nelson K, Bernstein PS. The Age-Related Eye Disease 2 Study: micronutrients in the treatment of macular degeneration. Adv Nutr 2017; 8: 40-53 doi:10.3945/an.116.013177
  • 40 Age-Related Eye Disease Study 2 Research Group, Chew EY, Clemons TE, Sangiovanni JP. . et al. Secondary analyses of the effects of lutein/zeaxanthin on age-related macular degeneration progression: AREDS2 report No. 3. JAMA Ophthalmol 2014; 132: 142-149
  • 41 Rock CL, Thornquist MD, Neuhouser ML. et al. Diet and lifestyle correlates of lutein in the blood and diet. J Nutr 2002; 132: 525S-530S
  • 42 Curran-Celentano J, Hammond jr. BR, Ciulla TA. et al. Relation between dietary intake, serum concentrations, and retinal concentrations of lutein and zeaxanthin in adults in a Midwest population. Am J Clin Nutr 2001; 74: 796-802
  • 43 LaRowe TL, Mares JA, Snodderly DM. et al. Macular pigment density and age-related maculopathy in the Carotenoids in Age-Related Eye Disease Study. An ancillary study of the womenʼs health initiative. Ophthalmology 2008; 115: 876-883.e1
  • 44 Tan JS, Wang JJ, Flood V. et al. Dietary antioxidants and the long-term incidence of age-related macular degeneration: the Blue Mountains Eye Study. Ophthalmology 2008; 115: 334-341
  • 45 Lambert NG, ElShelmani H, Singh MK. et al. Risk factors and biomarkers of age-related macular degeneration. Prog Retin Eye Res 2016; 54: 64-102 doi:10.1016/j.preteyeres.2016.04.003
  • 46 Klein R, Klein B, Franke T. The relationship of cardiovascular disease and its risk factors to age-related maculopathy: the Beaver Dam Eye Study. Ophthalmology 1993; 100: 406-414
  • 47 Seddon JM, Willett WC, Speizer FE. et al. A prospective study of cigarette smoking and age-related macular degeneration in women. JAMA 1996; 276: 1141-1146
  • 48 Vingerling JR, Hofman A, Grobbee DE. et al. Age-related macular degeneration and smoking – The Rotterdam study. Arch Ophthalmol 1996; 114: 1193-1196
  • 49 Chakravarthy U, Augood C, Bentham CG. et al. Cigarette smoking and age-related macular degeneration in the EUREYE Study. Ophthalmology 2007; 114: 1157-1163
  • 50 Seddon JM, Cote J, Davis N. et al. Progression of age-related macular degeneration: association with body mass index, waist circumference, and waist-hip ratio. Arch Ophthalmol 2003; 121: 785-792
  • 51 Mares JA, Voland RP, Sondel SA. et al. Healthy lifestyles related to subsequent prevalence of age-related macular degeneration. Arch Ophthalmol 2011; 129: 470-480 doi:10.1001/archophthalmol.2010.314
  • 52 Trichopoulou A, Kouris-Blazos A, Wahlqvist ML. et al. Diet and overall survival in elderly people. BMJ 1995; 311: 1457-1460
  • 53 Estruch R, Ros E, Salas-Salvado J. et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med 2013; 368: 1279-1290
  • 54 Feart C, Samieri C, Rondeau V. et al. Adherence to a Mediterranean diet, cognitive decline, and risk of dementia. JAMA 2009; 302: 638-648
  • 55 Merle B, Colijn JM, Cougnard-Grégoire A. et al. Mediterranean diet and incidence of advanced AMD: The EYE-RISK Consortium. Ophthalmology 2019; 126: 381-390 doi:10.1016/j.ophtha.2018.08.006
  • 56 Sangiovanni JP, Agrón E, Meleth AD. et al. {omega}-3 Long-chain polyunsaturated fatty acid intake and 12-y incidence of neovascular age-related macular degeneration and central geographic atrophy: AREDS report 30, a prospective cohort study from the Age-Related Eye Disease Study. Am J Clin Nutr 2009; 90: 1601-1607
  • 57 Chong EW, Kreis AJ, Wong TY. et al. Dietary omega-3 fatty acid and fish intake in the primary prevention of age-related macular degeneration: a systematic review and meta-analysis. Arch Ophthalmol 2008; 126: 826-833
  • 58 Augood C, Chakravarthy U, Young I. et al. Oily fish consumption, dietary docosahexaenoic acid and eicosapentaenoic acid intakes, and associations with neovascular age-related macular degeneration. Am J Clin Nutr 2008; 88: 398-406
  • 59 Tan JS, Wang JJ, Flood V. et al. Dietary fatty acids and the 10-year incidence of age-related macular degeneration: the Blue Mountains Eye Study. Arch Ophthalmol 2009; 127: 656-665
  • 60 Delcourt C, Carrière I, Cristol JP. et al. Dietary fat and the risk of age-related maculopathy: the POLANUT study. Eur J Clin Nutr 2007; 61: 1341-1344
  • 61 Langcake P, Pryce RJ. The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol Plant Pathol 1976; 9: 77-86 doi:10.1016/0048-4059(76)90077-1
  • 62 Delmas D, Jannin B, Latruffe N. Resveratrol: preventing properties against vascular alterations and ageing. Mol Nutr Food Res 2005; 49: 377-395 doi:10.1002/mnfr.200400098
  • 63 Richard T, Pawlus AD, Iglésias ML. et al. Neuroprotective properties of resveratrol and derivatives. Ann N Y Acad Sci 2011; 1215: 103-108 doi:10.1111/j.1749-6632.2010.05865
  • 64 Sheu SJ, Liu NC, Chen JL. Resveratrol protects human retinal pigment epithelial cells from acrolein-induced damage. J Ocul Pharmacol Ther 2010; 26: 231-236 doi:10.1089/jop.2009.0137
  • 65 Lançon A, Frazzi R, Latruffe N. Anti-oxidant, anti-inflammatory and anti-angiogenic properties of resveratrol in ocular diseases. Molecules 2016; 21: 304 doi:10.3390/molecules21030304
  • 66 Obisesan TO, Hirsch R, Kosoko O. et al. Moderate wine consumption is associated with decreased odds of developing age-related macular degeneration in NHANES-1. J Am Geriatr Soc 1998; 46: 1-7
  • 67 Cho E, Hankinson SE, Willett WC. et al. Prospective study of alcohol consumption and the risk of age-related macular degeneration. Arch Ophthalmol 2000; 118: 681-688
  • 68 Pérez-Canales JL, Rico-Sergado L, Pérez-Santonja JJ. Self-reported sleep duration in patients with neovascular age-related macular degeneration. Ophthalmic Epidemiol 2016; 23: 20-26
  • 69 Khurana RN, Porco TC, Claman DM. et al. Increasing sleep duration is associated with geographic atrophy and age-related macular degeneration. Retina 2016; 36: 255-258