Hamostaseologie 2015; 35(02): 121-127
DOI: 10.5482/HAMO-14-09-0040
Review
Schattauer GmbH

Neutrophils in atherosclerosis

A brief overviewNeutrophile Granulozyten und AtheroskleroseEine kurze Übersicht
H. Hartwig
1   Department of Pathology, Academic Medical Center (AMC), Amsterdam, the Netherlands
,
C. Silvestre Roig
1   Department of Pathology, Academic Medical Center (AMC), Amsterdam, the Netherlands
,
M. Daemen
1   Department of Pathology, Academic Medical Center (AMC), Amsterdam, the Netherlands
,
E. Lutgens
2   Department of Medical Biochemistry, Academic Medical Center (AMC), Amsterdam, the Netherlands
3   Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany
,
O. Soehnlein
1   Department of Pathology, Academic Medical Center (AMC), Amsterdam, the Netherlands
2   Department of Medical Biochemistry, Academic Medical Center (AMC), Amsterdam, the Netherlands
4   German Centre for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
› Author Affiliations
The authors’ research is supported by the DFG (SO876/3–1, SO876/6–1, SFB914 TP B08, SFB1123 TP A6 and B5), the Else Kröner Fresenius Stiftung, the NWO (VIDI project 91712303), and the LMU excellence initiative.
Further Information

Publication History

received: 01 September 2014

accepted in revised form: 29 October 2014

Publication Date:
28 December 2017 (online)

Summary

Atherosclerosis is a chronic inflammation of the arterial wall and the continuous infiltration of leukocytes into the plaque enhances the progression of the lesion. Because of the scarce detection of neutrophils in atherosclerotic plaques compared to other immune cells, their contribution was largely neglected. However, in the last years studies have accumulated pointing towards the contribution of neutrophils to atherogenesis. In addition, studies are emerging implying a role for neutrophils in advanced atherosclerosis and/or plaque destabilization. Thus, this brief review delivers an overview of the role of neutrophils during early and late stage atherosclerosis.

Zusammenfassung

Atherosklerose ist eine chronische Entzündung der Arterienwand. Die kontinuierliche Infiltration von Leukozyten fördert ihr Fortschreiten. Aufgrund der geringen Anzahl neutrophiler Granulozyten in atherosklerotischen Läsionen wurde die Rolle dieser Zellen bisher weitgehend vernachlässigt. Studienergebnisse der vergangenen Jahre deuten darauf hin, dass neutrophile Granulozyten zur Initiation und Progression der Atherosklerose wesentlich beitragen. Außerdem lassen neue Untersuchungen auf eine Rolle neutrophiler Granulozyten in der Destabilisierung atherosklerotischer Läsionen schließen. In dieser Übersicht sind die wichtigsten Funktionen neutrophiler Granulozyten in verschiedenen Phasen der Atherosklerose zusammengefasst.

 
  • References

  • 1 Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature 2011; 473: 317-325.
  • 2 Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med 2011; 17: 1410-1422.
  • 3 Drechsler M, Megens RTA, van Zandvoort M. et al. Hyperlipidemia-Triggered Neutrophilia Promotes Early Atherosclerosis. Circulation 2010; 122: 1837-1845.
  • 4 Ionita MG, van den Borne P, Catanzariti LM. et al. High Neutrophil Numbers in Human Carotid Atherosclerotic Plaques Are Associated With Characteristics of Rupture-Prone Lesions. Arteriosclerosis, Thromb Vasc Biol 2010; 30: 1842-1848.
  • 5 Moreno JA, Ortega-Gomez A, Delbosc S. et al. In vitro and in vivo evidence for the role of elastase shedding of CD163 in human atherothrombosis. Eur Heart J 2012; 33: 252-263.
  • 6 Hartaigh B, Bosch JA, Thomas GN. et al. Which leukocyte subsets predict cardiovascular mortality? From the LUdwigshafen RIsk and Cardiovascular Health (LURIC) Study. Atherosclerosis 2012; 224: 161-169.
  • 7 Semerad CL, Liu F, Gregory AD. et al. G-CSF Is an essential regulator of neutrophil trafficking from the bone marrow to the blood. Immunity 2002; 17: 413-423.
  • 8 Martin C, Burdon PCE, Bridger G. et al. Chemokines Acting via CXCR2 and CXCR4 Control the release of neutrophils from the bone marrow and their return following senescence. Immunity 2003; 19: 583-593.
  • 9 Strydom N, Rankin SM. Regulation of circulating neutrophil numbers under homeostasis and in disease. J Innate Immunity 2013; 05: 304-314.
  • 10 Zernecke A, Bot I, Djalali-Talab Y. et al. Protective role of CXC receptor 4/CXC ligand 12 unveils the importance of neutrophils in atherosclerosis. Circulation Res 2008; 102: 209-217.
  • 11 Bot I, Daissormont IT, Zernecke A. et al. CXCR4 blockade induces atherosclerosis by affecting neutrophil function. J Mol Cell Cardiol 2014; 74: 44-52.
  • 12 Casanova-Acebes Ma, Pitaval C, Weiss L. et al. Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell 2013; 153: 1025-1035.
  • 13 Swirski FK, Nahrendorf M, Etzrodt M. et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 2009; 325: 612-616.
  • 14 Yvan-Charvet L, Pagler T, Gautier EL. et al. ATPbinding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 2010; 328: 1689-1693.
  • 15 Westerterp M, Gourion-Arsiquaud S, Murphy A. et al. Regulation of hematopoietic stem and progenitor cell mobilization by cholesterol efflux pathways. Cell Stem Cell 2012; 11: 195-206.
  • 16 Murphy AJ, Akhtari M, Tolani S. et al. ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice. J Clin Invest 2011; 121: 4138-4149.
  • 17 Nagareddy P, Murphy A, Stirzaker R. et al. Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis. Cell Metabolism 2013; 17: 695-708.
  • 18 Nagareddy P, Kraakman M, Masters S. et al. Adipose tissue macrophages promote myelopoiesis and monocytosis in obesity. Cell Metabolism 2014; 19: 821-835.
  • 19 Heidt T, Sager HB, Courties G. et al. Chronic variable stress activates hematopoietic stem cells. Nat Med 2014; 20: 754-758.
  • 20 Döring Y, Soehnlein O, Drechsler M. et al. Hematopoietic interferon regulatory factor 8-deficiency accelerates atherosclerosis in mnice. Arterioscler Thromb Vasc Biol 2012; 32: 1613-1623.
  • 21 Soehnlein O, Lindbom L. Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 2010; 10: 427-439.
  • 22 Mayadas TN, Cullere X, Lowell CA. The multifaceted functions of neutrophils. Ann Rev Pathol Mech Dis 2014; 09: 181-218.
  • 23 Mócsai A. Diverse novel functions of neutrophils in immunity, inflammation, and beyond. The J Exp Med 2013; 210: 1283-1299.
  • 24 Rajendran P, Rengarajan TF, Thangavel JF. et al. The vascular endothelium and human diseases. 1449-2288 (Electronic).
  • 25 Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 2013; 13: 159-175.
  • 26 von Hundelshausen P, Weber KS, Huo Y. et al. RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium. Circulation 2001; 103: 1772-1777.
  • 27 Soehnlein MDrechsler, Döring Y. et al. Distinct functions of chemokine receptor axes in the atherogenic mobilization and recruitment of classical monocytes. EMBO Molecular Medicine 2013; 05: 471-481.
  • 28 Döring Y, Noels H, Mandl M. et al. Deficiency of the sialyltransferase St3Gal4 reduces Ccl5-mediated myeloid cell recruitment and arrest: Short Communication. Circulation Res 2014; 114: 976-981.
  • 29 Burkhart JM, Vaudel M, Gambaryan S. et al. The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood 2012; 120: e73-e82.
  • 30 Hartwig H, Drechsler M, Lievens D. et al. Platelet-derived PF4 reduces neutrophil apoptosis following arterial occlusion. Thromb Haemost 2014; 111: 562-564.
  • 31 Koenen RR, von Hundelshausen P, Nesmelova IV. et al. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nat Med 2009; 15: 97-103.
  • 32 Grommes J, Alard JE, Drechsler M. et al. Disruption of platelet-derived chemokine heteromers prevents neutrophil extravasation in acute lung injury. Am J Respir Crit Care Med 2012; 185: 628-636.
  • 33 Huo Y, Schober A, Forlow SB. et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat Med 2003; 09: 61-67.
  • 34 Massberg S, Brand K, Grüner S. et al. A Critical Role of Platelet Adhesion in the Initiation of Atherosclerotic Lesion Formation. J Exp Med 2002; 196: 887-896.
  • 35 Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 2013; 13: 709-721.
  • 36 Drechsler M, Soehnlein O. The Complexity of Arterial Classical Monocyte Recruitment. J Innate Immunity 2013; 05: 358-§66.
  • 37 Soehnlein O, Xie X, Ulbrich H. et al. Neutrophil-derived heparin-binding protein (HBP/CAP37) deposited on endothelium enhances monocyte Arrest under flow conditions. J Immunol 2005; 174: 6399-6405.
  • 38 Taekema-Roelvink Mej, Kooten CV, Kooij SVD. et al. Proteinase 3 enhances endothelial monocyte chemoattractant protein-1 production and induces increased adhesion of neutrophils to endothelial cells by upregulating intercellular cell adhesion molecule-1. J Am Soc Nephrol 2001; 12: 932-940.
  • 39 Quinn KL, Henriques M, Tabuchi A. et al. Human neutrophil peptides mediate endothelial-monocyte interaction, foam cell formation, and platelet activation. Arterioscler Thromb Vasc Biol 2011; 31: 2070-2079.
  • 40 Soehnlein O, Lindbom L, Weber C. Mechanisms underlying neutrophil-mediated monocyte recruitment. Blood 2009; 114: 4613-4623.
  • 41 Döring Y, Drechsler M, Wantha S. et al. Lack of neutrophil-derived CRAMP reduces atherosclerosis in mice. Circulation Res 2012; 110: 1052-1056.
  • 42 Wantha S, Alard JE, Megens RTA. et al. Neutrophil-derived cathelicidin promotes adhesion of classical monocytes. Circulation Res 2013; 112: 792-801.
  • 43 Chalaris A, Rabe B, Paliga K. et al. Apoptosis is a natural stimulus of IL6R shedding and contributes to the proinflammatory trans-signaling function of neutrophils. Blood 2007; 110: 1748-1755.
  • 44 Schuett H, Oestreich R, Waetzig GH. et al. Trans-signaling of interleukin-6 crucially contributes to atherosclerosis in mice. Arterioscler Thromb Vasc Biol 2012; 32: 281-290.
  • 45 Moore K, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell 2011; 145: 341-355.
  • 46 Soehnlein O, Kai-Larsen Y, Frithiof R. et al. Neutrophil primary granule proteins HBP and HNP1–3 boost bacterial phagocytosis by human and murine macrophages. J Clin Invest 2008; 118: 3491-3502.
  • 47 Gombart AF, Krug U, O’Kelly J. et al. Aberrant expression of neutrophil and macrophage-related genes in a murine model for human neutrophil-specific granule deficiency. J Leukoc Biol 2005; 78: 1153-1165.
  • 48 Shiohara M, Gombart AF, Sekiguchi Y. et al. Phenotypic and functional alterations of peripheral blood monocytes in neutrophil-specific granule deficiency. J Leukoc Biol 2004; 75: 190-197.
  • 49 Soehnlein O, Weber C. Myeloid cells in atherosclerosis: initiators and decision shapers. Semin Immunopathol 2009; 31: 35-47.
  • 50 Falk E, Nakano M, Bentzon JF. et al. Update on acute coronary syndromes: the pathologists’ view. Eur Heart J 2013; 34: 719-728.
  • 51 Silvestre-Roig C, de Winther MP, Weber C. et al. Atherosclerotic plaque destabilization: Mechanisms, models, and therapeutic strategies. Circ Res 2014; 114: 214-226.
  • 52 Rotzius P, Thams S, Soehnlein O. et al. Distinct infiltration of neutrophils in lesion shoulders in ApoE-/- mice. Am J Pathol 2010; 177: 493-500.
  • 53 Buffon A, Biasucci LM, Liuzzo G. et al. Widespread coronary inflammation in unstable angina. N Engl J Med 2002; 347: 5-12.
  • 54 Newby AC. Matrix metalloproteinase inhibition therapy for vascular diseases. Vasc Pharmacol 2012; 56: 232-244.
  • 55 Lenglet S, Thomas Al, Soehnlein O. et al. Fatty acid amide hydrolase deficiency enhances intraplaque neutrophil recruitment in atherosclerotic mice. Arterioscler Thromb Vasc Biol 2013; 33: 215-223.
  • 56 Laxton RC, Hu Y, Duchene J. et al. A role of matrix metalloproteinase-8 in atherosclerosis. Circulation Research 2009; 105: 921-929.
  • 57 Quillard T, Araújo HA, Franck G. et al. Matrix metalloproteinase-13 predominates over matrix metalloproteinase-8 as the functional interstitial collagenase in mouse atheromata. Arterioscler Thromb Vasc Biol 2014; 34: 1179-1186.
  • 58 Quillard T, Tesmenitsky Y, Croce K. et al. Selective inhibition of matrix metalloproteinase-13 increases collagen content of established mouse atherosclerosis. Arterioscler Thromb Vasc Biol 2011; 31: 2464-2472.
  • 59 Van den Steen PE, Wuyts A, Husson SJ. et al. Gelatinase B/MMP-9 and neutrophil collagenase/ MMP-8 process the chemokines human GCP- 2/CXCL6, ENA-78/CXCL5 and mouse GCP-2/LIX and modulate their physiological activities. Eur J Biochem 2003; 270: 3739-3749.
  • 60 Tester AM, Cox JH, Connor AR. et al. LPS responsiveness and neutrophil chemotaxis in vivo require PMN MMP-8 activity. PLoS ONE 2007; 02: e312.
  • 61 Meuwese MC, Stroes ESG, Hazen SL. et al. Serum myeloperoxidase levels are associated with the future risk of coronary artery disease in apparently healthy individuals: The EPIC-Norfolk Prospective Population Study. J Am Coll Cardiol 2007; 50: 159-165.
  • 62 Naruko T, Ueda M, Haze K. et al. Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation 2002; 106: 2894-2900.
  • 63 Lau D, Mollnau H, Eiserich JP. et al. Myeloperoxidase mediates neutrophil activation by association with CD11b/CD18 integrins. Proc Natl Acad Sci USA 2005; 102: 431-436.
  • 64 Wang JG, Mahmud SA, Nguyen J, Slungaard A. Thiocyanate-dependent induction of endothelial cell adhesion molecule expression by phagocyte peroxidases: A novel HOSCN-specific oxidant mechanism to amplify inflammation. J Immunol 2006; 177: 8714-8722.
  • 65 Norata GD, Marchesi P, Pulakazhi VKVenu. et al. Deficiency of the long pentraxin PTX3 promotes vascular inflammation and atherosclerosis. Circulation 2009; 120: 699-708.
  • 66 Ait-Oufella H, Kinugawa K, Zoll J. et al. Lactadherin deficiency leads to apoptotic cell accumulation and accelerated atherosclerosis in mice. Circulation 2007; 115: 2168-2177.
  • 67 Thorp E, Vaisar T, Subramanian M. et al. Shedding of the Mer tyrosine kinase receptor is mediated by ADAM17 protein through a pathway involving reactive oxygen species, protein kinase Cδ, and p38 mitogen-activated protein kinase (MAPK). J Biol Chem 2011; 286: 33335-33344.
  • 68 Sather SK. A soluble form of the Mer receptor tyrosine kinase inhibits macrophage clearance of apoptotic cells and platelet aggregation. Blood 2006; 109: 1026-1033.
  • 69 Driscoll WS, Vaisar T, Tang J. et al. Macrophage ADAM17 deficiency augments CD36-dependent apoptotic cell uptake and the linked anti-inflammatory phenotype. Circ Res 2013; 113: 52-61.
  • 70 Van den Berg CW, Tambourgi DV, Clark HW. et al. Mechanism of neutrophil dysfunction: Neutrophil serine proteases cleave and inactivate the C5a receptor. J Immunol 2014; 192: 1787-1795.