Subscribe to RSS
DOI: 10.3414/ME0468
HbA1c Values Calculated from Blood Glucose Levels Using Truncated Fourier Series and Implementation in Standard SQL Database Language
Publication History
Received:
04 December 2006
Accepted:
17 December 2007
Publication Date:
18 January 2018 (online)
Summary
Objectives: This article presents a mathematical model to calculate HbA1c values based on self-measured blood glucose and past HbA1c levels, there by enabling patients to monitor diabetes therapy between scheduled checkups. This method could help physicians to make treatment decisions if implemented in a system where glucose data are transferred to a remote server. The method, however, cannot replace HbA1c measurements; past HbA1c values are needed to gauge the method.
Methods: The mathematical model of HbA1c formation was developed based on biochemical principles. Unlike an existing HbA1c formula [1], the new model respects the decreasing contribution of older glucose levels to current HbA1c values. About 12 standard SQL statements embedded in a php program were used to per-form Fourier transform. Regression analysis was used to gauge results with previous HbA1c values. The method can be readily implemented in any SQL database. Results: The predicted HbA1c values thus obtained were in accordance with measured values. They also matched the results of the HbA1c formula in the elevated range. By contrast, the formula was too “optimistic” in the range of better glycemic control. Individual analysis of two subjects improvedthe accuracy of values and reflected the bias introduced by different glucometers and individual measurement habits.
-
References
- 1 Thomas L. Labor und Diagnose. 5.Auflage. 1998 p 5.
- 2 Larizza C. et al. The M2DM Project – the experience of two Italian clinical sites with clinical evaluation of a multi-access service for the management of diabetes mellitus patients. Methods Inf Med 2006; 45 (Suppl. 01) 79-84.
- 3 DeVries JH. et al. Improved glycaemic control in type 1 diabetes patients following participation per se in a clinical trial – mechanisms and implications. Diabetes Metab Res Rev 2003; 19 (Suppl. 05) 357-362.
- 4 Nomura DM. Importance of using and understanding self-monitoring of blood glucose (SMBG) data in assessing ambient and long-term glycaemic control. J Indian Med Assoc 2002; 100 (Suppl. 07) 448 450-451.
- 5 Marre M, Sauvanet JP. What allows a type 1 diabetic to be well controlled. Diabetes Metab 2002; 28 4 Pt 2 2S7-2S14.
- 6 Rodgers J, Walker R. Glycaemic control in type 2 diabetes. Nurs Times 2002; 98 (19) 56-57.
- 7 Rahlenbeck SI. Monitoring diabetic control in developing countries: a review of glycated haemoglobin and fructosamine assays. Trop Doct 1998; 28 (Suppl. 01) 9-15.
- 8 Dworacka M. et al. 1,5-anhydro-D-glucitol: a novel marker of glucose excursions. Int J Clin Pract Suppl 2002; 129: 40-44.
- 9 Jeffcoate SL. Diabetes control and complications: the role of glycated haemoglobin, 25 years on. Diabet Med 2004; 21 (Suppl. 07) 657-665.
- 10 Bunn HF, Gabbay KH, Gallop PM. The glycosylation of hemoglobin: relevance to diabetes mellitus. Science 1978; 200 4337 21-27.
- 11 Schernthaner G. et al. The clinical importance of glycohaemoglobin (HbA1) (author’s transl). Wien Klin Wochenschr Suppl 1980; 115: 1-11.
- 12 Kasezawa N. et al. Criteria for screening diabetes mellitus using serum fructosamine level and fasting plasma glucose level. The Japanese Society of Multiphasic Health Testing and Services (JMHT), Fructosamine Working Committee. Methods Inf Med 1993; 32 (Suppl. 03) 237-340.
- 13 Gugliucci A. Glycation as the glucose link to diabetic complications. J Am Osteopath Assoc 2000; 100 (10) 621-634.
- 14 Higgins PJ, Bunn HF. Kinetic analysis of the nonenzymatic glycosylation of hemoglobin. J Biol Chem 1981; 256 (10) 5204-5208.
- 15 Kilpatrick ES. Problems in the assessment of glycaemic control in diabetes mellitus. Diabet Med 1997; 14 (10) 819-831.
- 16 Kildegaard J. et al. A study of trained clinicians’ blood glucose predictions based on diaries of people with type 1 diabetes. Methods Inf Med 2007; 46 (Suppl. 05) 553-557.
- 17 Hyysalo S, Lehenkari J. An activity-theoretical method for studying user participation in IS design. Methods Inf Med 2003; 42 (Suppl. 04) 398-404.
- 18 Goldwyn AJ, Ember G. DIAPAS: A “personalized alerting service” for diabetes. Methods Inf Med 1967; 6 (Suppl. 03) 130-135.
- 19 Park J, Edington DW. Application of a prediction model for identification of individuals at diabetic risk. Methods Inf Med 2004; 43 (Suppl. 03) 273-281.
- 20 Armengol E, Palaudaries A, Plaza E. Individual prognosis of diabetes long-term risks: a CBR approach. Methods Inf Med 2001; 40 (Suppl. 01) 46-51.
- 21 Chakravarty S, Shahar Y. Acquisition and analysis of repeating patterns in time-oriented clinical data. Methods Inf Med 2001; 40 (Suppl. 05) 410-420.
- 22 Achtmeyer CE, Payne TH, Anawalt BD. Computer order entry system decreased use of sliding scale insulin regimens. Methods Inf Med 2002; 41 (Suppl. 04) 277-281.
- 23 Miller JD. et al. Spontaneous and stimulated growth hormone release in adolescents with type I diabetes mellitus: effects of metabolic control. J Clin Endocrinol Metab 1992; 75 (Suppl. 04) 1087-1091.
- 24 Derr R. et al. Is HbA(1c) affected by glycemic instability?. Diabetes Care 2003; 26 (10) 2728-2733.
- 25 Näser K-H. Physikalische Chemie. Leipzig: VEB Deutscher Verlag für Grundstoffindustrie; 1960
- 26 Heuser H. Lehrbuch der Analysis. Teil 1. Vol. 1. Stuttgart: B. G. Teubner; 1986
- 27 Temsch W. Discrete Fourier Analysis. Diploma Thesis; Vienna: 12/1996.
- 28 Feichtinger HG, Gröchenig K. Theory and practice of irregular sampling.
- 29 Strohmer T. Irregular Sampling. Frames and Pseudoinverse 1991
- 30 Sachs L. Angewandte Statistik. 6th ed. Berlin, Heidelberg, New York, Tokyo: Springer Verlag; 1984
- 31 Kastner P. et al. Diab-Memory: Ein Mobilfunkgestütztes Datenservice zur Unterstützung der funktionellen Insulintherapie. 2003
- 32 Andersson N. Prototype for Transmission of Glucometer Data by Wireless Technology. http://www.csd.uu.se/datalogi/cmtrl/xjobb/docsreports/ Niklas_Andersson-2003.pdf.
- 33 Adlaßnig A. Mobiltelefone als Blutzuckermeßgeräte. www.diabetes-news.de.
- 34 Dorda W. et al. Introducing the electronic health record in Austria. Stud Health Technol Inform 2005; 116: 119-124.
- 35 Collste G, Shahsavar N, Gill GA. decision support system for diabetes care: ethical aspects. Methods Inf Med 1999; 38 (4-5) 313-316
- 36 Biermann E. et al. Semi-automatic generation of medical tele-expert opinion for primary care physician. Methods Inf Med 2003; 42 (Suppl. 03) 212-219.