Tierarztl Prax Ausg K Kleintiere Heimtiere 2016; 44(01): 39-46
DOI: 10.15654/TPK-140729
Übersichtsartikel
Schattauer GmbH

Zentrale Lokomotionsgeneratoren im Rückenmark der Katze und ihre Bedeutung bei der Rehabilitation nach spinalen Läsionen

Central pattern generators in the spinal cord of the cat and their relevance in rehabilitation after spinal lesion
A. Dillenseger
,
S. Schulze
2   Klinik für Kleintiere – Chirurgie, Justus-Liebig-Universität Gießen
,
H. Martens
3   Institut für Veterinär-Physiologie, Freie Universität Berlin
,
M. J. Schmidt
2   Klinik für Kleintiere – Chirurgie, Justus-Liebig-Universität Gießen
› Author Affiliations
Further Information

Publication History

Received: 12 August 2014

Accepted after major revision: 01 October 2015

Publication Date:
18 December 2017 (online)

Zusammenfassung

Die Fähigkeit des Rückenmarks, sich nach partiellen oder vollständigen Schädigungen wieder zu erholen und sogar die Gehfähigkeit wiederherzustellen, ist Gegenstand vieler Untersuchungen an Katzen. Wesentliche Erkenntnis dieser Versuche ist, dass selbst nach einer vollständigen Durchtrennung des Rückenmarks auf der Ebene des 12./13. thorakalen Rückenmarksabschnittes eine gute Chance auf Wiederherstellung der Bewegung in den Hintergliedmaßen besteht. Eine wichtige Rolle spielen dabei die im Rückenmark gelegenen zentralen Lokomotionsgeneratoren („central pattern generators“, CPGs). Die CPGs alleine bewirken allerdings keine Reinitiierung der Motorik, sondern ein gezieltes und konsequentes Bewegungstraining, kombiniert unter Umständen mit einer sensorischen Stimulation der Hintergliedmaßen, ist dafür essenziell. Beide Maßnahmen führen zu einer Neuorganisation der CPGs sowie der neuronalen Netzwerke im Rückenmark. Grundsätzlich sind dabei das Alter der Tiere zum Zeitpunkt der Verletzung sowie Ausmaß und Lokalisation der Läsionen von großer Bedeutung. Einen neuen Ansatzpunkt liefert der Einfluss von Neurotransmittern/Neuromodulatoren auf die Regeneration des Rückenmarks. Inwieweit diese das Bewegungstraining unterstützen können, bedarf allerdings noch weiterführender klinischer Untersuchungen.

Summary

The ability of the spinal cord to recover after partial or complete transection, and even reinitiate motor function, was investigated in several studies in cats. It has been shown that even after a complete spinalisation at the level of T12/T13, the possibility of restoration of hindlimb function is good. Central pattern generators (CPGs), located in the spinal cord, play an important role in this situation. Although CPGs alone are unable to restore function, the combination of CPGs with targeted and consistent mobility training and, in some cases, hindlimb sensory stimulation is essential to improve function. These result in a reorganisation of the CPGs and neuronal networks in the spinal cord. The age of the animal at the time of injury and the extent and localisation of lesions, play a crucial role in recovery. A new focus of research is the influence of neurotransmitters/neuromodulators on spinal- cord regeneration. How and to what extent these factors support locomotor training remains for further clinical investigation.

 
  • Literatur

  • 1 Armstrong DM. Supraspinal contributions to the initiation and control of locomotion in the cat. Prog neurobiol 1986; 26 (04) 273-361.
  • 2 Armstrong DM. The supraspinal control of mammalian locomotion. J Physiol 1988; 405: 1-37.
  • 3 Barbeau H, Rossignol S. Recovery of locomotion after chronic spinalization in the adult cat. Brain Res 1987; 412 (01) 84-95.
  • 4 Barbeau H, Rossignol S. The effects of serotonergic drugs on the locomotor pattern and on cutaneous reflexes of the adult chronic spinal cat. Brain Res 1990; 514 (01) 55-67.
  • 5 Barbeau H, Rossignol S. Initiation and modulation of the locomotor pattern in the adult chronic spinal cat by noradrenergic, serotonergic and dopaminergic drugs. Brain Res 1991; 546 (02) 250-260.
  • 6 Barthe JY, Clarac F. Modulation of the spinal network for locomotion by substance P in the neonatal rat. Exp Brain Res 1997; 115 (03) 485-492.
  • 7 Bonath KH, Prieur WD. Kleintierkrankheiten.. Stuttgart-Hohenheim: Ulmer; 1998: 19-23.
  • 8 Brustein E, Rossignol S. Recovery of locomotion after ventral and ventrolateral spinal lesions in the cat. I. Deficits and adaptive mechanisms. J Neurophysiol 1998; 80 (03) 1245-1267.
  • 9 Brustein E, Rossignol S. Recovery of locomotion after ventral and ventrolateral spinal lesions in the cat. II. Effects of noradrenergic and serotoninergic drugs. J Neurophysiol 1999; 81 (04) 1513-1530.
  • 10 Cazalets JR, Sqalli-Houssaini Y, Clarac F. Activation of the central pattern generators for locomotion by serotonin and excitatory amino acids in neonatal rat. J Physiol 1992; 455: 187-204.
  • 11 Chau C, Barbeau H, Rossignol S. Effects of intrathecal alpha1- and alpha2- noradrenergic agonists and norepinephrine on locomotion in chronic spinal cats. J Neurophysiol 1998; 79 (06) 2941-2963.
  • 12 Chau C, Giroux N, Barbeau H, Jordan L, Rossignol S. Effects of intrathecal glutamatergic drugs on locomotion I. NMDA in short-term spinal cats. J Neurophysiol 2002; 88 (06) 3032-3045.
  • 13 Dietz V. Locomotor training in paraplegic patients. Ann Neurol 1995; 38 (06) 965.
  • 14 Dietz V. Spinal cord pattern generators for locomotion. Clin Neurophysiol 2003; 114 (08) 1379-1389.
  • 15 Douglas JR, Noga BR, Dai X, Jordan LM. The effects of intrathecal administration of excitatory amino acid agonists and antagonists on the initiation of locomotion in the adult cat. J Neurosci 1993; 13 (03) 990-1000.
  • 16 Drew T, Jiang W, Widajewicz W. Contributions of the motor cortex to the control of the hindlimbs during locomotion in the cat. Brain Res Brain Res Rev 2002; 40 (13) 178-191.
  • 17 Duysens J, Van de Crommert HW. Neural control of locomotion; The central pattern generator from cats to humans. Gait Posture 1998; 7 (02) 131-141
  • 18 Edgerton VR, Leon RD, Harkema SJ, Hodgson JA, London N, Reinkensmeyer DJ. et al. Retraining the injured spinal cord. J Physiol 2001; 533 (Pt1) 15-22.
  • 19 Eidelberg E, Story JL, Meyer BL, Nystel J. Stepping by chronic spinal cats. Exp Brain Res 1980; 40 (03) 241-246.
  • 20 English AW. Interlimb coordination during stepping in the cat: effects of dorsal column section. J Neurophysiol 1980; 44 (02) 270-279.
  • 21 Frey H-H. Zentrales Nervensystem (ZNS). Physiologie der Haustiere.. Engelhardt Wv, Breves G. Stuttgart: Enke; 2000: 44-69.
  • 22 Garcia-Rill E, Skinner RD. The mesencephalic locomotor region. II. Projections to reticulospinal neurons. Brain Res 1987; 411 (01) 13-20.
  • 23 Gossard JP, Brownstone RM, Barajon I, Hultborn H. Transmission in a locomotor-related group Ib pathway from hindlimb extensor muscles in the cat. Exp Brain Res 1994; 98 (02) 213-228.
  • 24 Grillner S. Interaction between sensory signals and the central networks controlling locomotion in lamprey, dogfish and cat. Neurobiology of Vertebrate Locomotion Wenner Gren international symposium series 45.. Grillner S. London: 1986: 505-512.
  • 25 Grillner S. Ion channels and locomotion. Science 1997; 278 5340 1087-1088.
  • 26 Grillner S, Deliagina T, Ekeberg O, el Manira A, Hill RH, Lansner A. et al. Neural networks that co-ordinate locomotion and body orientation in lamprey. Trends Neurosci 1995; 18 (06) 270-279.
  • 27 Jankowska E, Lundberg A. Interneurones in the spinal cord. Trends Neurosci 1981; 4: 230-233.
  • 28 Jiang W, Drew T. Effects of bilateral lesions of the dorsolateral funiculi and dorsal columns at the level of the low thoracic spinal cord on the control of locomotion in the adult cat. I. Treadmill walking. J Neurophysiol 1996; 76 (02) 849-866.
  • 29 Katz PS. Intrinsic and extrinsic neuromodulation of motor circuits. Curr Opin Neurobiol 1995; 5 (06) 799-808.
  • 30 Kehne JH, Gallager DW, Davis M. Spinalization unmasks clonidine’s alpha 1-adrenergic mediated excitation of the flexor reflex in rats. J Neurosci 1985; 5 (06) 1583-1590.
  • 31 Kiehn O, Kjaerulff O. Distribution of central pattern generators for rhythmic motor outputs in the spinal cord of limbed vertebrates. Ann NY Acad Sci 1998; 860: 110-129.
  • 32 König HE, Liebich H-G. Allgemeine Anatomie des Nervensystems. Anatomie der Haussäugetiere - Lehrbuch und Farbatlas für Studium und Praxis. 6. Aufl. Stuttgart: Schattauer; 2014: 39-47.
  • 33 MacKay-Lyons M. Central pattern generation of locomotion: a review of the evidence. Phys Ther 2002; 82 (01) 69-83.
  • 34 Marder E, Bucher D. Central pattern generators and the control of rhythmic movements. Curr Biol 2001; 11 (23) R986-996.
  • 35 Martinez M, Delivet-Mongrain H, Leblond H, Rossignol S. Recovery of hindlimb locomotion after incomplete spinal cord injury in the cat involves spontaneous compensatory changes within the spinal locomotor circuitry. J Neurophysiol 2011; 106 (04) 1969-1984.
  • 36 Orlovsky GN. Cerebellum and locomotion. Neurobiological Basis of Human Locomotion.. Shimamura M, Grillner S, Edgerton VR. Tokyo: Japan Scientific Societies Press; 1991: 187-199.
  • 37 Parker D, Grillner S. Tachykinin-mediated modulation of sensory neurons, interneurons, and synaptic transmission in the lamprey spinal cord. J Neurophysiol 1996; 76 (06) 4031-4039.
  • 38 Pearson KG. Common principles of motor control in vertebrates and invertebrates. Ann Rev Neurosci 1993; 16: 265-297.
  • 39 Pearson KG. Could enhanced reflex function contribute to improving locomotion after spinal cord repair?. J Physiol 2001; 533 (Pt1) 75-81.
  • 40 Robinson GA, Goldberger ME. The development and recovery of motor function in spinal cats. I. The infant lesion effect. Exp Brain Res 1986; 62 (02) 373-386.
  • 41 Rossignol S. Locomotion and its recovery after spinal injury. Curr Opin Neurobiol 2000; 10 (06) 708-716.
  • 42 Rossignol S, Barriere G, Alluin O, Frigon A. Re-expression of locomotor function after partial spinal cord injury. Physiol 2009; 24: 127-139.
  • 43 Rossignol S, Chau C, Brustein E, Belanger M, Barbeau H, Drew T. Locomotor capacities after complete and partial lesions of the spinal cord. Acta Neurobiol Exp 1996; 56 (01) 449-463.
  • 44 Rossignol S, Giroux N, Chau C, Marcoux J, Brustein E, Reader TA. Pharmacological aids to locomotor training after spinal injury in the cat. J Physiol 2001; 533 (Pt1) 65-74.
  • 45 Satterlie RA. Reciprocal inhibition and postinhibitory rebound produce reverberation in a locomotor pattern generator. Science 1985; 229 4711 402-404.
  • 46 Szentkuti L, Ehrlein HJ. Muskelphysiologie. Physiologie der Haustiere.. Engelhardt Wv, Breves G. Stuttgart: Enke; 2000: 110-135.
  • 47 Vilensky JA, O‘Connor BL. Stepping in nonhuman primates with a complete spinal cord transection: old and new data, and implications for humans. Ann NY Acad Sci 1998; 860: 528-530.
  • 48 Whelan PJ. Control of locomotion in the decerebrate cat. Prog Neurobiol 1996; 49 (05) 481-515.
  • 49 Wolpaw JR, Braitman DJ, Seegal RF. Adaptive plasticity in primate spinal stretch reflex: initial development. J Neurophysiol 1983; 50 (06) 1296-1311.
  • 50 Bali MS, Lang J, Jaggy A, Spreng D, Doherr MG, Forterre F. Comparative study of vertebral fractures in dogs and cats. Vet Comp Orthop Traumatol 2009; 22: 47-53.