Thromb Haemost 2010; 103(02): 262-270
DOI: 10.1160/TH09-08-0517
Review Article
Schattauer GmbH

TRPC channels in vascular cell function

Alexander Dietrich
1   Institute for Pharmacology and Toxicology, Philipps-University Marburg, Germany
,
Hermann Kalwa*
1   Institute for Pharmacology and Toxicology, Philipps-University Marburg, Germany
,
Thomas Gudermann
2   Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians University Munich, Germany
› Author Affiliations
Further Information

Publication History

Received: 01 August 2009

Accepted after minor revision: 10 October 2009

Publication Date:
22 November 2017 (online)

Summary

The mammalian transient receptor potential (TRP) superfamily of non-selective cation channels can be divided into six major families. Among them, the “classical” or “canonical” TRPC family is most closely related to Drosophila TRP, the founding member of the superfamily. All seven channels of this family designated TRPC1–7 share the common property of receptor-operated activation through phospholipase C (PLC)-coupled receptors, but their regulation by store-dependent mechanisms involving the proteins STIM and ORAi is still discussed controversially. This review will focus on the proposed functions of TRPC proteins in cells of the vascular system (e.g. platelets, smooth muscle cells and endothelial cells) and will present data concerning their physiological functions analysed in isolated tissues with down-regulated channel activity and in gene-deficient mouse models.

* present address: Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA


 
  • References

  • 1 Venkatachalam K, Montell C. TRP channels. Annu Rev Biochem 2007; 76: 387-417.
  • 2 Hofmann T, Obukhov AG, Schaefer M. et al. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 1999; 397: 259-263.
  • 3 Okada T, Inoue R, Yamazaki K. et al. Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca(2+)-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J Biol Chem 1999; 274: 27359-27370.
  • 4 Dietrich A, Mederos y Schnitzler M, Kalwa H. et al. Functional characterization and physiological relevance of the TRPC3/6/7 subfamily of cation channels. Naunyn Schmiedebergs Arch Pharmacol 2005; 371: 257-265.
  • 5 Hofmann T, Schaefer M, Schultz G. et al. Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci USA 2002; 99: 7461-7466.
  • 6 Goel M, Sinkins WG, Schilling WP. Selective association of TRPC channel subunits in rat brain synaptosomes. J Biol Chem 2002; 277: 48303-48310.
  • 7 Strubing C, Krapivinsky G, Krapivinsky L. et al. Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J Biol Chem 2003; 278: 39014-39019.
  • 8 DeHaven WI, Jones BF, Petranka JG. et al. TRPC channels function independently of STIM1 and Orai1. J Physiol 2009; 587: 2275-2298.
  • 9 Dietrich A, Kalwa H, Rost BR. et al. The diacylgylcerol-sensitive TRPC3/6/7 sub-family of cation channels: functional characterization and physiological relevance. Pflugers Arch 2005; 451: 72-80.
  • 10 Liou J, Kim ML, Heo WD. et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 2005; 15: 1235-1241.
  • 11 Roos J, DiGregorio PJ, Yeromin AV. et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 2005; 169: 435-445.
  • 12 Zhang SL, Yu Y, Roos J. et al. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 2005; 437: 902-905.
  • 13 Feske S, Gwack Y, Prakriya M. et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 2006; 441: 179-185.
  • 14 Vig M, Peinelt C, Beck A. et al. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 2006; 312: 1220-1223.
  • 15 Cahalan MD. STIMulating store-operated Ca(2+) entry. Nat Cell Biol 2009; 11: 669-677.
  • 16 Liao Y, Plummer NW, George MD. et al. A role for Orai in TRPC-mediated Ca2+ entry suggests that a TRPC:Orai complex may mediate store and receptor operated Ca2+ entry. Proc Natl Acad Sci USA 2009; 106: 3202-3206.
  • 17 Yuan JP, Zeng W, Dorwart MR. et al. SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat Cell Biol 2009; 11: 337-343.
  • 18 Yuan JP, Kim MS, Zeng W. et al. TRPC channels as STIM1-regulated SOCs. Channels (Austin) 2009; 3: 221-225.
  • 19 Dietrich A, Mederos YSM, Gollasch M. et al. Increased vascular smooth muscle contractility in TRPC6-/- mice. Mol Cell Biol 2005; 25: 6980-6989.
  • 20 Dietrich A, Kalwa H, Storch U. et al. Pressure-induced and store-operated cation influx in vascular smooth muscle cells is independent of TRPC1. Pflugers Arch 2007; 455: 465-477.
  • 21 Weissmann N, Dietrich A, Fuchs B. et al. Classical transient receptor potential channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange. Proc Natl Acad Sci USA 2006; 103: 19093-19098.
  • 22 Dietrich A, Kalwa H, Fuchs B. et al. In vivo TRPC functions in the cardiopulmonary vasculature. Cell Calcium 2007; 42: 233-244.
  • 23 Watanabe H, Murakami M, Ohba T. et al. The pathological role of transient receptor potential channels in heart disease. Circ J 2009; 73: 419-427.
  • 24 Rauch U, Nemerson Y. Tissue factor, the blood, and the arterial wall. Trends Cardiovasc Med 2000; 10: 139-143.
  • 25 Giesen PL, Rauch U, Bohrmann B. et al. Blood-borne tissue factor: another view of thrombosis. Proc Natl Acad Sci USA 1999; 96: 2311-2315.
  • 26 Langer HF, Gawaz M. Platelet-vessel wall interactions in atherosclerotic disease. Thromb Haemost 2008; 99: 480-486.
  • 27 Varga-Szabo D, Pleines I, Nieswandt B. Cell adhesion mechanisms in platelets. Arterioscler Thromb Vasc Biol 2008; 28: 403-412.
  • 28 Hathaway DR, Adelstein RS. Human platelet myosin light chain kinase requires the calcium-binding protein calmodulin for activity. Proc Natl Acad Sci USA 1979; 76: 1653-1657.
  • 29 Shattil SJ, Brass LF. Induction of the fibrinogen receptor on human platelets by intracellular mediators. J Biol Chem 1987; 262: 992-1000.
  • 30 Authi KS. TRP channels in platelet function. Handb Exp Pharmacol 2007; 179: 425-443.
  • 31 Schwertz H, Tolley ND, Foulks JM. et al. Signal-dependent splicing of tissue factor pre-mRNA modulates the thrombogenicity of human platelets. J Exp Med 2006; 203: 2433-2440.
  • 32 Hassock SR, Zhu MX, Trost C. et al. Expression and role of TRPC proteins in human platelets: evidence that TRPC6 forms the store-independent calcium entry channel. Blood 2002; 100: 2801-2811.
  • 33 Rosado JA, Brownlow SL, Sage SO. Endogenously expressed Trp1 is involved in store-mediated Ca2+ entry by conformational coupling in human platelets. J Biol Chem 2002; 277: 42157-42163.
  • 34 Rosado JA, Sage SO. Activation of store-mediated calcium entry by secretion-like coupling between the inositol 1,4,5-trisphosphate receptor type II and human transient receptor potential (hTrp1) channels in human platelets. Biochem J 2001; 356: 191-198.
  • 35 Varga-Szabo D, Authi KS, Braun A. et al. Store-operated Ca(2+) entry in platelets occurs independently of transient receptor potential (TRP) C1. Pflugers Arch 2008; 457: 377-387.
  • 36 Varga-Szabo D, Braun A, Nieswandt B. Calcium signaling in platelets. J Thromb Haemost 2009; 7: 1057-1066.
  • 37 Grosse J, Braun A, Varga-Szabo D. et al. An EF hand mutation in Stim1 causes premature platelet activation and bleeding in mice. J Clin Invest 2007; 117: 3540-3550.
  • 38 Pries AR, Kuebler WM. Normal endothelium. Handb Exp Pharmacol 2006; 176: 1-40.
  • 39 Paria BC, Malik AB, Kwiatek AM. et al. Tumor necrosis factor-alpha induces nuclear factor-kappaB-dependent TRPC1 expression in endothelial cells. J Biol Chem 2003; 278: 37195-37203.
  • 40 Tiruppathi C, Freichel M, Vogel SM. et al. Impairment of store-operated Ca2+ entry in TRPC4(-/-) mice interferes with increase in lung microvascular permeability. Circ Res 2002; 91: 70-76.
  • 41 Singh I, Knezevic N, Ahmmed GU. et al. Galpha q-TRPC6-mediated Ca2+ entry induces RhoA activation and resultant endothelial cell shape change in response to thrombin. J Biol Chem 2007; 282: 7833-7843.
  • 42 Paria BC, Vogel SM, Ahmmed GU. et al. Tumor necrosis factor-alpha-induced TRPC1 expression amplifies store-operated Ca2+ influx and endothelial permeability. Am J Physiol Lung Cell Mol Physiol 2004; 287: L1303-1313.
  • 43 Paria BC, Bair AM, Xue J. et al. Ca2+ influx induced by protease-activated receptor-1 activates a feed-forward mechanism of TRPC1 expression via nuclear factor-kappaB activation in endothelial cells. J Biol Chem 2006; 281: 20715-20727.
  • 44 Cioffi DL, Wu S, Alexeyev M. et al. Activation of the endothelial store-operated ISOC Ca2+ channel requires interaction of protein 4.1 with TRPC4. Circ Res 2005; 97: 1164-1172.
  • 45 Odell AF, Van Helden DF, Scott JL. The spectrin cytoskeleton influences the surface expression and activation of human transient receptor potential channel 4 channels. J Biol Chem 2008; 283: 4395-4407.
  • 46 Cioffi DL, Stevens T. Regulation of endothelial cell barrier function by store-operated calcium entry. Microcirculation 2006; 13: 709-723.
  • 47 Cheng HW, James AF, Foster RR. et al. VEGF activates receptor-operated cation channels in human microvascular endothelial cells. Arterioscler Thromb Vasc Biol 2006; 26: 1768-1776.
  • 48 Jho D, Mehta D, Ahmmed G. et al. Angiopoietin-1 opposes VEGF-induced increase in endothelial permeability by inhibiting TRPC1-dependent Ca2 influx. Circ Res 2005; 96: 1282-1290.
  • 49 Freichel M, Suh SH, Pfeifer A. et al. Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4-/- mice. Nat Cell Biol 2001; 3: 121-127.
  • 50 Yoshida T, Inoue R, Morii T. et al. Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2006; 2: 596-607.
  • 51 Dedkova EN, Blatter LA. Nitric oxide inhibits capacitative Ca2+ entry and enhances endoplasmic reticulum Ca2+ uptake in bovine vascular endothelial cells. J Physiol 2002; 539: 77-91.
  • 52 Takeuchi K, Watanabe H, Tran QK. et al. Nitric oxide: inhibitory effects on endothelial cell calcium signaling, prostaglandin I2 production and nitric oxide synthase expression. Cardiovasc Res 2004; 62: 194-201.
  • 53 Yao X, Huang Y. From nitric oxide to endothelial cytosolic Ca2+: a negative feedback control. Trends Pharmacol Sci 2003; 24: 263-266.
  • 54 Kwan HY, Huang Y, Yao X. Store-operated calcium entry in vascular endothelial cells is inhibited by cGMP via a protein kinase G-dependent mechanism. J Biol Chem 2000; 275: 6758-6763.
  • 55 Kwan HY, Huang Y, Yao X. Regulation of canonical transient receptor potential isoform 3 (TRPC3) channel by protein kinase G. Proc Natl Acad Sci USA 2004; 101: 2625-2630.
  • 56 Hartmann J, Dragicevic E, Adelsberger H. et al. TRPC3 channels are required for synaptic transmission and motor coordination. Neuron 2008; 59: 392-398.
  • 57 Riccio A, Li Y, Moon J. et al. Essential role for TRPC5 in amygdala function and fear-related behavior. Cell 2009; 137: 761-772.
  • 58 Stenmark KR, Fagan KA, Frid MG. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res 2006; 99: 675-691.
  • 59 Fantozzi I, Zhang S, Platoshyn O. et al. Hypoxia increases AP-1 binding activity by enhancing capacitative Ca2+ entry in human pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 2003; 285: L1233-1245.
  • 60 Balzer M, Lintschinger B, Groschner K. Evidence for a role of Trp proteins in the oxidative stress-induced membrane conductances of porcine aortic endothelial cells. Cardiovasc Res 1999; 42: 543-549.
  • 61 Groschner K, Rosker C, Lukas M. Role of TRP channels in oxidative stress. Novartis Found Symp 2004; 258: 222-235 263-266.
  • 62 Poteser M, Graziani A, Rosker C. et al. TRPC3 and TRPC4 associate to form a redox-sensitive cation channel. Evidence for expression of native TRPC3-TRPC4 heteromeric channels in endothelial cells. J Biol Chem 2006; 281: 13588-13595.
  • 63 Chaudhuri P, Colles SM, Damron DS. et al. Lysophosphatidylcholine inhibits endothelial cell migration by increasing intracellular calcium and activating calpain. Arterioscler Thromb Vasc Biol 2003; 23: 218-223.
  • 64 Chaudhuri P, Colles SM, Bhat M. et al. Elucidation of a TRPC6-TRPC5 channel cascade that restricts endothelial cell movement. Mol Biol Cell 2008; 19: 3203-3211.
  • 65 Fleming I, Rueben A, Popp R. et al. Epoxyeicosatrienoic acids regulate Trp channel dependent Ca2+ signaling and hyperpolarization in endothelial cells. Arterioscler Thromb Vasc Biol 2007; 27: 2612-2618.
  • 66 Busse R, Fleming I. Vascular endothelium and blood flow. Handb Exp Pharmacol 2006; 176: 43-78.
  • 67 Dietrich A, Chubanov V, Kalwa H. et al. Cation channels of the transient receptor potential superfamily: their role in physiological and pathophysiological processes of smooth muscle cells. Pharmacol Ther 2006; 112: 744-760.
  • 68 House SJ, Potier M, Bisaillon J. et al. The non-excitable smooth muscle: calcium signaling and phenotypic switching during vascular disease. Pflugers Arch 2008; 456: 769-785.
  • 69 Yu Y, Sweeney M, Zhang S. et al. PDGF stimulates pulmonary vascular smooth muscle cell proliferation by upregulating TRPC6 expression. Am J Physiol Cell Physiol 2003; 284: C316-330.
  • 70 Golovina VA, Platoshyn O, Bailey CL. et al. Upregulated TRP and enhanced capacitative Ca(2+) entry in human pulmonary artery myocytes during proliferation. Am J Physiol Heart Circ Physiol 2001; 280: H746-755.
  • 71 Yu Y, Fantozzi I, Remillard CV. et al. Enhanced expression of transient receptor potential channels in idiopathic pulmonary arterial hypertension. Proc Natl Acad Sci USA 2004; 101: 13861-13866.
  • 72 Kumar B, Dreja K, Shah SS. et al. Upregulated TRPC1 channel in vascular injury in vivo and its role in human neointimal hyperplasia. Circ Res 2006; 98: 557-563.
  • 73 Zhang S, Remillard CV, Fantozzi I. et al. ATP-induced mitogenesis is mediated by cyclic AMP response element-binding protein-enhanced TRPC4 expression and activity in human pulmonary artery smooth muscle cells. Am J Physiol Cell Physiol 2004; 287: C1192-1201.
  • 74 Xu SZ, Muraki K, Zeng F. et al. A sphingosine-1-phosphate-activated calcium channel controlling vascular smooth muscle cell motility. Circ Res 2006; 98: 1381-1389.
  • 75 Wu G, Lu ZH, Obukhov AG. et al. Induction of calcium influx through TRPC5 channels by cross-linking of GM1 ganglioside associated with alpha5beta1 inte-grin initiates neurite outgrowth. J Neurosci 2007; 27: 7447-7458.
  • 76 Inoue R, Okada T, Onoue H. et al. The transient receptor potential protein homo-logue TRP6 is the essential component of vascular alpha(1)-adrenoceptor-activated Ca(2+)-permeable cation channel. Circ Res 2001; 88: 325-332.
  • 77 Jung S, Strotmann R, Schultz G. et al. TRPC6 is a candidate channel involved in receptor-stimulated cation currents in A7r5 smooth muscle cells. Am J Physiol Cell Physiol 2002; 282: C347-359.
  • 78 Sel S, Rost BR, Yildirim AO. et al. Loss of classical transient receptor potential 6 channel reduces allergic airway response. Clin Exp Allergy 2008; 38: 1548-1558.
  • 79 Dietrich A, Mederos y Schnitzler M, Emmel J. et al. N-linked protein glycosylation is a major determinant for basal TRPC3 and TRPC6 channel activity. J Biol Chem 2003; 278: 47842-47852.
  • 80 Welsh DG, Morielli AD, Nelson MT. et al. Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ Res 2002; 90: 248-250.
  • 81 Reading SA, Earley S, Waldron BJ. et al. TRPC3 mediates pyrimidine receptor-induced depolarization of cerebral arteries. Am J Physiol Heart Circ Physiol 2005; 288: H2055-2061.
  • 82 Liu D, Scholze A, Zhu Z. et al. Increased transient receptor potential channel TRPC3 expression in spontaneously hypertensive rats. Am J Hypertens 2005; 18: 1503-1507.
  • 83 Liu D, Scholze A, Zhu Z. et al. Transient receptor potential channels in essential hypertension. J Hypertens 2006; 24: 1105-1114.
  • 84 Bergdahl A, Gomez MF, Dreja K. et al. Cholesterol depletion impairs vascular reactivity to endothelin-1 by reducing store-operated Ca2+ entry dependent on TRPC1. Circ Res 2003; 93: 839-847.
  • 85 Bergdahl A, Gomez MF, Wihlborg AK. et al. Plasticity of TRPC expression in arterial smooth muscle: correlation with store-operated Ca2+ entry. Am J Physiol Cell Physiol 2005; 288: C872-880.
  • 86 Kunichika N, Yu Y, Remillard CV. et al. Overexpression of TRPC1 enhances pulmonary vasoconstriction induced by capacitative Ca2+ entry. Am J Physiol Lung Cell Mol Physiol 2004; 287: L962-969.
  • 87 Wang J, Weigand L, Lu W. et al. Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expression and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells. Circ Res 2006; 98: 1528-1537.
  • 88 Wang J, Shimoda LA, Weigand L. et al. Acute hypoxia increases intracellular [Ca2+] in pulmonary arterial smooth muscle by enhancing capacitative Ca2+ entry. Am J Physiol Lung Cell Mol Physiol 2005; 288: L1059-1069.
  • 89 Walker RL, Hume JR, Horowitz B. Differential expression and alternative splicing of TRP channel genes in smooth muscles. Am J Physiol Cell Physiol 2001; 280: C1184-1192.
  • 90 Wang J, Shimoda LA, Sylvester JT. Capacitative calcium entry and TRPC channel proteins are expressed in rat distal pulmonary arterial smooth muscle. Am J Physiol Lung Cell Mol Physiol 2004; 286: L848-858.
  • 91 Estacion M, Sinkins WG, Jones SW. et al. TRPC6 Forms Non-selective Cation Channels with Limited Ca2+ Permeability. J Physiol 2006; 572: 359-377.
  • 92 Gudermann T, Mederos y Schnitzler M, Dietrich A. Receptor-operated cation entry--more than esoteric terminology?. Sci STKE 2004; 243: pe35.
  • 93 Soboloff J, Spassova M, Xu W. et al. Role of endogenous TRPC6 channels in Ca2+ signal generation in A7r5 smooth muscle cells. J Biol Chem 2005; 280: 39786-39794.
  • 94 Dietrich A, Gudermann T. Trpc6. Handb Exp Pharmacol 2007; 179: 125-141.
  • 95 Inoue R, Jian Z, Kawarabayashi Y. Mechanosensitive TRP channels in cardiovascular pathophysiology. Pharmacol Ther 2009; 123: 371-385.
  • 96 Maroto R, Raso A, Wood TG. et al. TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 2005; 7: 179-185.
  • 97 Spassova MA, Hewavitharana T, Xu W. et al. A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci USA 2006; 103: 16586-16591.
  • 98 Gottlieb P, Folgering J, Maroto R. et al. Revisiting TRPC1 and TRPC6 mechanosensitivity. Pflugers Arch 2008; 455: 1097-1103.
  • 99 Mederos y Schnitzler M, Storch U, Meibers S. et al. Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction. EMBO J 2008; 27: 3092-3103.
  • 100 Basora N, Boulay G, Bilodeau L. et al. 20-hydroxyeicosatetraenoic acid (20-HETE) activates mouse TRPC6 channels expressed in HEK293 cells. J Biol Chem 2003; 278: 31709-31716.
  • 101 Inoue R, Jensen LJ, Jian Z. et al. Synergistic activation of vascular TRPC6 channel by receptor and mechanical stimulation via phospholipase C/diacylglycerol and phospholipase A2/omega-hydroxylase/20-HETE pathways. Circ Res 2009; 104: 1399-1409.
  • 102 Keseru B, Barbosa-Sicard E, Popp R. et al. Epoxyeicosatrienoic acids and the soluble epoxide hydrolase are determinants of pulmonary artery pressure and the acute hypoxic pulmonary vasoconstrictor response. FASEB J 2008; 22: 4306-4315.
  • 103 Vazquez E, Valverde MA. A review of TRP channels splicing. Semin Cell Dev Biol 2006; 17: 607-617.