Synlett 2008(16): 2540-2546  
DOI: 10.1055/s-2008-1078214
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Iron/Copper-Cocatalyzed Ullmann N,O-Arylation Using FeCl3, CuO, and rac-1,1′-Binaphthyl-2,2′-diol

Zhe Wanga, Hua Fu*a, Yuyang Jianga,b, Yufen Zhaoa
a Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. of China
Fax: +86(10)62781695; e-Mail: fuhua@mail.tsinghua.edu.cn;
b Key Laboratory of Chemical Biology, College of Shenzhen, Tsinghua University, Guangdong Province, Shenzhen 518057, P. R. of China
Further Information

Publication History

Received 22 May 2008
Publication Date:
22 August 2008 (online)

Abstract

We have developed an efficient and inexpensive bimetallic catalyst FeCl3, CuO, and rac-BINOL that could promote N,O-arylation of aliphatic, arylamines, and phenols. The cross-coupling reaction conditions have high tolerance of various functional groups. This versatile and efficient iron/copper-cocatalyst can widely be used in the synthesis of the compounds containing ­(aryl)C-N or (aryl)C-O(aryl) bond.

    References and Notes

  • 1a Ullmann F. Ber. Dtsch. Chem. Ges.  1903,  36:  2389 
  • 1b Ullmann F. Ber. Dtsch. Chem. Ges.  1904,  37:  853 
  • 2 Ley SV. Thomas AW. Angew. Chem. Int. Ed.  2003,  42:  5400 
  • 3a Klapars A. Antilla JC. Huang X. Buchwald SL. J. Am. Chem. Soc.  2001,  123:  7727 
  • 3b Antilla JC. Klapars A. Buchwald SL. J. Am. Chem. Soc.  2002,  124:  11684 
  • 3c Antilla JC. Baskin JM. Barder TE. Buchwald SL. J. Org. Chem.  2004,  69:  5578 
  • 4a Gujadhur RK. Bates CG. Venkataraman D. Org. Lett.  2001,  3:  4315 
  • 4b van Allen D. Venkataraman D. J. Org. Chem.  2003,  68:  4590 
  • 5a Kwong FY. Klapars A. Buchwald SL. Org. Lett.  2002,  4:  581 
  • 5b Chen Y.-J. Chen H.-H. Org. Lett.  2006,  8:  5609 
  • 5c Kwong FY. Buchwald SL. Org. Lett.  2003,  5:  793 
  • 6a Ma D. Zhang Y. Yao J. Wu S. Tao F. J. Am. Chem. Soc.  1998,  120:  12459 
  • 6b Ma D. Xia C. Org. Lett.  2001,  3:  2583 
  • 6c Ma D. Cai Q. Zhang H. Org. Lett.  2003,  5:  2453 
  • 6d Ma D. Cai Q. Org. Lett.  2003,  5:  3799 
  • 6e Ma D. Cai Q. Synlett  2004,  128 
  • 6f Pan X. Cai Q. Ma D. Org. Lett.  2004,  6:  1809 
  • 6g Zhu W. Ma D. Chem. Commun.  2004,  888 
  • 6h Ma D. Liu F. Chem. Commun.  2004,  1934 
  • 6i Zhang H. Cai Q. Ma D. J. Org. Chem.  2005,  70:  5164 
  • 6j Guo X. Rao H. Fu H. Jiang Y. Zhao Y. Adv. Synth. Catal.  2006,  348:  2197 
  • 7a Cristau H.-J. Cellier PP. Spindler J.-F. Taillefer M. Eur. J. Org. Chem.  2004,  695 
  • 7b Cristau H.-J. Cellier PP. Spindler J.-F. Taillefer M. Chem. Eur. J.  2004,  10:  5607 
  • 8 Zhang S. Zhang D. Liebeskind LS. J. Org. Chem.  1997,  62:  2312 
  • 9a Kelkar AA. Patil NM. Chaudhari RV. Tetrahedron Lett.  2002,  43:  7143 
  • 9b Gajare AS. Toyota K. Yoshifuji M. Yoshifuji F. Chem. Commun.  2004,  1994 
  • 10 Yang M. Liu F. J. Org. Chem.  2007,  72:  8969 
  • 11a Shafir A. Buchwald SL. J. Am. Chem. Soc.  2006,  128:  8742 
  • 11b Lv X. Bao W. J. Org. Chem.  2007,  72:  3863 
  • 12a Rao H. Fu H. Jiang Y. Zhao Y. J. Org. Chem.  2005,  70:  8107 
  • 12b Rao H. Jin Y. Fu H. Jiang Y. Zhao Y. Chem. Eur. J.  2006,  12:  3636 
  • 12c Zhu D. Wang R. Mao J. Xu L. Wu F. Wan B. J. Mol. Catal. A: Chem.  2006,  256:  256 
  • 12d Jiang D. Fu H. Jiang Y. Zhao Y. J. Org. Chem.  2007,  72:  672 
  • 12e Tanimori S. Ura H. Kirihata M. Eur. J. Org. Chem.  2007,  3977 
  • See some recent reports for O-arylation:
  • 13a Marcoux J.-F. Doye S. Buchwald SL. J. Am. Chem. Soc.  1997,  119:  10539 
  • 13b Buck E. Song ZJ. Tschaen D. Dormer PG. Volante RP. Reider PJ. Org. Lett.  2002,  4:  1623 
  • 13c Fagan PJ. Hauptman E. Shapiro R. Casalnuovo A. J. Am. Chem. Soc.  2000,  122:  5043 
  • 13d Gujadhur RK. Bates CG. Venkataraman D. Org. Lett.  2001,  3:  4135 
  • 13e Cristau HJ. Cellier PP. Hamada S. Spindler JF. Tailefer M. Org. Lett.  2004,  6:  913 
  • 13f Jin Y. Liu J. Yin Y. Fu H. Jiang Y. Zhao Y. Synlett  2006,  1564 
  • 14 Bolm C. Legros J. Paih JL. Zani L. Chem. Rev.  2004,  104:  6217 
  • For recent work dealing with iron-mediated arylations concerning C-C bond formation, see:
  • 15a Cahiez G. Avedissian H. Synthesis  1998,  1199 
  • 15b Dohle W. Kopp F. Cahiez G. Knochel P. Synlett  2001,  1901 
  • 15c Fürstner A. Leitner A. Mendez M. Krause H. J. Am. Chem. Soc.  2002,  124:  13856 
  • 15d Bedford RB. Bruce DW. Frost RM. Goodby JW. Hird M. Chem. Commun.  2004,  2822 
  • 15e Martin R. Fürstner A. Angew. Chem. Int. Ed.  2004,  43:  3955 
  • 15f Nakamura M. Matsuo K. Ito S. Nakamura E. J. Am. Chem. Soc.  2004,  126:  3686 
  • 15g Shirakawa E. Yamafumi T. Kimura T. Yamaguchi S. Hayashi T. J. Am. Chem. Soc.  2005,  127:  17164 
  • 15h Fürstner A. Martin R. Chem. Lett.  2005,  5:  624 
  • 15i Fürstner A. Krause H. Lehmann CW. Angew. Chem. Int. Ed.  2006,  45:  440 
  • 16a Taillefer M. Xia N. Ouali A. Angew. Chem. Int. Ed.  2007,  46:  934 
  • 16b Song R.-J. Deng C.-L. Xie Y.-X. Li J.-H. Tetrahedron Lett.  2007,  48:  7845 
  • 16c Correa A. Bolm C. Angew. Chem. Int. Ed.  2007,  46:  8862 
  • 16d Correa A. Garcia Mancheno O. Bolm C. Chem. Soc. Rev.  2008,  37:  1108 
  • 16e Correa A. Elmore S. Bolm C. Chem. Eur. J.  2008,  14:  3527 
  • 16f Correa A. Bolm C. Adv. Synth. Catal.  2008,  350:  391 
17

General Procedure A: Coupling of Aryl Halides with Amines A flask was charged with FeCl3 (16 mg, 0.1 mmol), CuO (8 mg, 0.1 mmol), Cs2CO3 (651 mg, 2 mmol), BINOL (57 mg, 0.2 mmol), and any remaining solids (amine and/or aryl halide). The flask was evacuated and backfilled with nitrogen (this procedure was repeated five times). Aryl halide (1 mmol, if liquid), amine (1.2 mmol, if liquid), and DMF (2 mL) were added to the flask under nitrogen atmosphere. The mixture was allowed to stir under nitrogen atmosphere at the shown temperature for the indicated period of time in the text (see Tables  [¹] and  [²] ). After cooling to r.t., the mixture was diluted with CH2Cl2 (ca. 20 mL), the solution was filtered, and the filter cake was further washed with CH2Cl2 (ca. 5 mL). The filtrate was washed with 1 M NaOH (ca. 10 mL). The combined aqueous phase was extracted with CH2Cl2 (2 × 10 mL). Organic layers were combined and dried over anhyd Na2SO4. The solvent of the filtrate was removed with the aid of a rotary evaporator, and the residue was purified by column chromatography on SiO2 using PE-EtOAc (60:1 to 10:1) as eluent to provide the desired product.
1-Phenyl-1H-indole (5l):¹6a yellow oil, yield 88%. ¹H NMR (300 MHz, CDCl3): δ = 7.61 (d, 1 H, J = 7.56 Hz), 7.42-7.51 (m, 5 H), 7.25-7.30 (m, 2 H), 7.13 (dd, 2 H, J = 9.60, 1.74 Hz), 6.61 (t, 1 H, J = 3.45 Hz). ¹³C NMR (75 MHz, CDCl3): δ = 139.9, 135.9, 129.7, 129.4, 128.1, 126.5, 124.5, 122.5, 121.2, 120.5, 110.6, 103.7. MS (EI): m/z = 193.23 [M+].

18

General Procedure B: Coupling of Aryl Halides with Phenols A flask was charged with FeCl3 (16 mg, 0.1 mmol), CuO (8 mg, 0.1 mmol), Cs2CO3 (651 mg, 2 mmol), 1,1′-binaphthyl-2,2′-diol (57 mg, 0.2 mmol), and any remaining solids (phenol and/or aryl halide). The flask was evacuated and backfilled with nitrogen (this procedure was repeated five times). Aryl halide (1 mmol, if liquid), phenol (1.2 mmol, if liquid), and DMF (2 mL) were added to the flask under nitrogen atmosphere. The flask mixture was allowed to stir under nitrogen atmosphere at the shown temperature for the indicated period of time in the text (see Table  [³] ). After cooling to r.t., the mixture was diluted with CH2Cl2 (ca. 20 mL), the solution was filtered, and the filter cake was further washed with CH2Cl2 (ca. 5 mL). The solvent of the filtrate was removed with the aid of a rotary evaporator, and the residue was purified by column chromatography on SiO2 using PE or PE-EtOAc (60:1 to 100:1) as eluent to provide the desired product.
1-(4-Chlorophenoxy)-3-methylbenzene (7f):6d colorless oil, yield 79%. ¹H NMR (300 MHz, CDCl3): δ = 7.25 (dd, 2 H, J = 6.87, 2.07 Hz), 7.18 (d, 1 H, J = 7.53 Hz), 6.91 (dd, 3 H, J = 6.84, 2.04 Hz), 6.78 (s, 2 H), 2.31 (s, 3 H). ¹³C NMR (75 MHz, CDCl3): δ = 157.0, 156.2, 140.2, 129.8, 129.7, 128.2, 124.6, 120.1, 119.8, 116.1, 21.5. MS (EI): m/z = 218.22 [M+].