Synlett 2008(16): 2475-2478  
DOI: 10.1055/s-2008-1078176
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Alkylation Reactions Using a Galactose-Based β-Keto Ester Enolate and Conversion into β-C-Galactosides

Dhananjoy Mondal, Frank Schweizer*
Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
Fax: +1(204)4747012; e-Mail: schweize@cc.umanitoba.ca;
Further Information

Publication History

Received 27 May 2008
Publication Date:
10 September 2008 (online)

Abstract

A de novo approach for the synthesis of biologically important C-galactosides has been achieved via use of an acyclic galactose-derived β-keto ester. The β-keto ester enolate serves as a C-nucleophile and reacts with primary alkyl halides and Michael acceptors to generate alkylation products that can be converted into β-C-galactosides and C-disaccharide mimics with high stereoselectivity.

    References and Notes

  • 1a Nicotra F. Top. Curr. Chem.  1997,  187:  55 
  • 1b Compain P. Martin OR. Bioorg. Med. Chem.  2001,  9:  3077 
  • 1c Bililign T. Griffith BR. Thorson JS. Nat. Prod. Rep.  2005,  22:  742 
  • 1d Hultin PG. Curr. Top. Med. Chem.  2005,  5:  1299 
  • 1e Zou W. Curr. Top. Med. Chem.  2005,  5:  1363 
  • 2a Postema MHD. C-Glycoside Synthesis   CRC Press; Boca Raton FL: 1995. 
  • 2b Levy DE. Tang C. The Chemistry of C-Glycosides   Pergamon; Tarrytown NY: 1995. 
  • 2c Du Y. Linhardt RJ. Vlahov IR. Tetrahedron  1998,  54:  9913 
  • 3a Wharton SA. Weis W. Skehel JJ. Wiley DC. The Infuenza Virus   Plenum; New York: 1989. 
  • 3b Hakamori S. Curr. Opin. Immun.  1991,  3:  646 
  • 3c Feizi T. Curr. Opin. Struct. Biol.  1993,  3:  701 
  • 3d Varki A. Proc. Natl. Acad. Sci. U. S. A.  1994,  91:  7390 
  • 3e Beuth J. Ko HL. Pulverer G. Uhlenbruck G. Pichlmaier H. Glycoconjugate J.  1995,  12:  1 ; and references therein
  • 3f Lasky L. Annu. Rev. Biochem.  1995,  64:  113 
  • 3g Toyokuni T. Singhal AK. Chem. Soc. Rev.  1995,  24:  231 
  • 3h Sears P. Wong C.-H. Proc. Natl. Acad. Sci.
    U. S. A.  1996,  93:  12086 
  • 3i Kiessling LL. Pohl NL. Chem. Biol.  1996,  3:  71 
  • 4a Beau J.-M. Gallagher T. Top. Curr. Chem.  1997,  187:  1 
  • 4b Postema MHD. Calimente D. In Glycochemistry: Principles, Synthesis and Applications   Wang PG. Bertozzi C. Marcel Dekker; New York: 2000.  p.77-131  
  • 4c Parrish JD. Little RD. Org. Lett.  2002,  4:  1439 
  • 4d Shao H. Wang Z. Lacroix E. Wu S.-H. Jennings HJ. Zou W. J. Am. Chem. Soc.  2002,  124:  2130 
  • 4e Harvey JE. Raw SA. Taylor RJK. Org. Lett.  2004,  6:  2611 
  • 4f Wipf P. Pierce JG. Zhuang N. Org. Lett.  2005,  7:  483 
  • 4g Postema MHD. Piper JL. Betts RL. J. Org. Chem.  2005,  70:  829 
  • 4h Bouvet VR. Ben RN. J. Org. Chem.  2006,  71:  3619 
  • 4i Juhásh Z. Micskei K. Gál E. Somsák L. Tetrahedron Lett.  2007,  48:  7351 
  • 4j Gong H. Sinisi R. Gagné MR. J. Am. Chem. Soc.  2007,  129:  1908 
  • 5a DeShong P. Slough GA. Elango V. Trainor GL. J. Am. Chem. Soc.  1985,  107:  7788 
  • 5b Rohr J. Thiericke R. Nat. Prod. Rep.  1992,  103 
  • 5c Postema MHD. Tetrahedron  1992,  48:  8545 
  • 5d Wittmann V. Kessler H. Angew. Chem., Int. Ed. Engl.  1993,  32:  1091 
  • 5e Jaramillo C. Knapp S. Synthesis  1994,  1 
  • 5f Mazeas D. Skrydstrup T. Beau J.-M. Angew. Chem., Int. Ed. Engl.  1995,  34:  909 
  • 5g Huang S.-C. Wong C.-H. Angew. Chem., Int. Ed. Engl.  1996,  35:  2671 
  • 5h Huang S.-C. Wong C.-H. Tetrahedron Lett.  1996,  37:  4903 
  • 5i Krohn K. Rohr J. Top. Curr. Chem.  1997,  188:  127 
  • 5j Vlahov IR. Vlahova PI. Lindhardt RJ. J. Am. Chem. Soc.  1997,  119:  1480 
  • 5k Leeuwenburgh MA. Timmers CM. van der Marel GA. van Boom JH. Mallet J.-M. Sinay PG. Tetrahedron Lett.  1997,  38:  6251 
  • 6a Noort D. Veeneman GH. Boons G.-JPH. van der Marel GA. Mulder GJ. van Boom JH. Synlett  1990,  205 
  • 6b C-Glycoside Synthesis   Postema MHD. CRC Press; Boca Raton: 1995.  p.57-60  
  • 6c Lowary T. Meldal M. Helmboldt A. Vasella A. Bock K. J. Org. Chem.  1998,  63:  9657 
  • 7a Quiocho FA. Pure Appl. Chem.  1989,  61:  1293 
  • 7b Nilsson UJ. Fournier E.-J. Hindsgaul O. Bioorg. Med. Chem. Lett.  1998,  8:  1215 
  • 7c Leffler H. Carlsson S. Hedlund M. Qian Y. Poirier F. Glycoconjugate J.  2004,  19:  433 ; and references therein
  • 8 Schweizer F. Hindsgaul O. Carbohydr. Res.  2006,  341:  1730 
  • 9 Paquette LA. Efremov I. J. Am. Chem. Soc.  2001,  123:  4492 
  • 10a Smith AB. Rivero RA. Hale KJ. Vaccaro HA. J. Am. Chem. Soc.  1991,  113:  2092 
  • 10b Guibé F. Tetrahedron  1997,  53:  13509 
  • 11 Ferreira PMT. Maia HLS. Monteiro LS. Tetrahedron Lett.  1999,  40:  4099 
  • 12a Witczak ZJ. Pure Appl. Chem.  1994,  66:  2189 
  • 12b Witczak ZJ. Chhabra R. Chen H. Xie X.-Q. Carbohydr. Res.  1997,  301:  167 
  • 13a Witczak ZJ. Chhabra R. Chojnacki J. Tetrahedron Lett.  1997,  38:  2215 
  • 13b Award L. Demange R. Zhu Y.-H. Vogel P. Carbohydr. Res.  2006,  341:  1235 
  • 14 Benetti S. Romagnoli R. De Rinsi C. Spalluto G. Zanirato V. Chem. Rev.  1995,  95:  1065 
15

Procedure for the Synthesis of β-Keto Ester 3 In an inert atmosphere a solution of ketose 2 (150 mg, 0.23 mmol) in dry DMF (5 mL) was cooled to 0 ˚C and a suspension of NaH (60 wt% in oil, 137 mg, 15 equiv) was added slowly over 5 min. After 30 min at 0 ˚C, allyl chloride (562 µL, 30 equiv) was added. The reaction was stirred at r.t. for 1 h, cooled to 0 ˚C, and quenched by slow addition to a mixture of ice and sat. NH4CI soln (10 mL). The resultant mixture was extracted twice with EtOAc (2 × 15 mL), and the combined extracts were dried over Na2SO4 and concentrated in vacuo. Flash column chromatography, with EtOAc-hexane (1:9) as eluent, gave β-keto ester 3 (138 mg, 87% yield) as an oil. ¹³C NMR (75 MHz, CDCl3): δ = 28.1 (Boc), 47.9, 69.9, 72.0, 73.1, 73.3, 73.4, 74.1, 77.8, 78.4, 79.5, 81.7 (quart. C, Boc), 84.4, 116.7, 127.5-128.5 (arom.), 135.3 (=CH2), 137.5, 138.0, 138.2, 138.4, 166.9, 204.4. MS (ES+): m/z = 717.31 [M + Na]+. Anal. Calcd for C43H50O8: C, 74.33; H, 7.25. Found: C, 74.41; H, 7.36.