Synlett 2008(13): 2017-2022  
DOI: 10.1055/s-2008-1077968
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Use of Acyl Phosphonates as a Coupling Partner for Rhodium-Catalyzed [2+2+2] Cycloaddition: Unexpected Dependence of the Reactivity on Structures of α,ω-Diynes

Ken Tanaka*, Rie Tanaka, Goushi Nishida, Masao Hirano
Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
Fax: +81(42)3887037; e-Mail: tanaka-k@cc.tuat.ac.jp;
Further Information

Publication History

Received 2 May 2008
Publication Date:
15 July 2008 (online)

Abstract

A cationic rhodium(I)-H8-BINAP complex catalyzes a [2+2+2] cycloaddition of 1,6- and 1,7-diynes with acyl phosphonates in high yields with high regioselectivity. Interestingly, the reactivity of α,ω-diynes toward acyl phosphonates is highly dependent on their own structures.

    References and Notes

  • For recent reviews of transition-metal-catalyzed [2+2+2] cycloadditions, see:
  • 1a Agenet N. Buisine O. Slowinski F. Gandon V. Aubert C. Malacria M. In Organic Reactions   Vol. 68:  Overman LE. John Wiley; Hoboken: 2007.  p.1 
  • 1b Heller B. Hapke M. Chem. Soc. Rev.  2007,  36:  1085 
  • 1c Chopade PR. Louie J. Adv. Synth. Catal.  2006,  348:  2307 
  • 1d Gandon V. Aubert C. Malacria M. Chem. Commun.  2006,  2209 
  • 1e Kotha S. Brahmachary E. Lahiri K. Eur. J. Org. Chem.  2005,  4741 
  • 1f Yamamoto Y. Curr. Org. Chem.  2005,  9:  503 
  • 1g Robinson JE. In Modern Rhodium-Catalyzed Organic Reactions   Evans PA. Wiley-VCH; Weinheim: 2005.  p.129 
  • 1h Varela JA. Saá C. Chem. Rev.  2003,  103:  3787 
  • For the use of stoichiometric cobalt reagents, see:
  • 2a Harvey DF. Johnson BM. Ung CS. Vollhardt KPC. Synlett  1989,  15 
  • 2b For the use of stoichiometric zirconacyclopentadienes, see: Gleiter R. Schehlmann V. Tetrahedron Lett.  1989,  30:  2893 
  • 2c Takahashi T. Li Y. Ito T. Xu F. Nakajima K. Liu Y. J. Am. Chem. Soc.  2002,  124:  1144 
  • For Ni catalysis, see:
  • 3a Tsuda T. Kiyoi T. Miyane T. Saegusa T. J. Am. Chem. Soc.  1988,  110:  8570 
  • 3b Tekavec TN. Louie J. Org. Lett.  2005,  7:  4037 
  • 3c Tekavec TN. Louie J. J. Org. Chem.  2008,  73:  2641 
  • 4 For Ni-catalyzed [4+2+2] cycloaddition of 1,6-diynes with cyclobutanones, see: Murakami M. Ashida S. Matsuda T. J. Am. Chem. Soc.  2006,  128:  2166 
  • 5 For Ru catalysis, see: Yamamoto Y. Takagishi H. Itoh K. J. Am. Chem. Soc.  2002,  124:  6844 
  • 6 For Ru(II)-catalyzed hydrative cyclization and [4+2] cycloaddition of yne-enones, see: Trost BM. Brown RE. Toste FD. J. Am. Chem. Soc.  2000,  122:  5877 
  • 7 Bennacer B. Fujiwara M. Lee S.-Y. Ojima I. J. Am. Chem. Soc.  2005,  127:  17756 
  • 8 Kong JR. Krische MJ. J. Am. Chem. Soc.  2006,  128:  16040 
  • For examples of carbonyl insertion into a Rh-C bond, see:
  • 9a Krug C. Hartwig JF. J. Am. Chem. Soc.  2002,  124:  1674 
  • 9b Fujii T. Koike T. Mori A. Osakada K. Synlett  2002,  298 
  • 10a Tanaka K. Otake Y. Wada A. Noguchi K. Hirano M. Org. Lett.  2007,  9:  2203 
  • After our publication, a similar manuscript was published, see:
  • 10b Tsuchikama K. Yoshinami Y. Shibata T. Synlett  2007,  1395 
  • 11 Recently, we have reported a cationic rhodium(I)-H8-BINAP-catalyzed regio-, diastereo-, and enantioselective [2+2+2] cycloaddition of 1,6-enynes with electron-deficient ketones. See: Tanaka K. Otake Y. Sagae H. Noguchi K. Hirano M. Angew. Chem. Int. Ed.  2008,  47:  1312 
  • 12a Nishida G. Noguchi K. Hirano M. Tanaka K. Angew. Chem. Int. Ed.  2007,  46:  3951 
  • 12b Nishida G. Noguchi K. Hirano M. Tanaka K. Angew. Chem. Int. Ed.  2008,  47:  3410 
  • For selected recent examples, see:
  • 13a Mandal T. Samanta S. Zhao C.-G. Org. Lett.  2007,  9:  943 
  • 13b Samanta S. Zhao C.-G. J. Am. Chem. Soc.  2006,  128:  7442 
  • 13c Demir AS. Reis O. Kayalar M. Eymur S. Reis B. Synlett  2006,  3329 
  • 13d Kim DY. Wiemer DF. Tetrahedron Lett.  2003,  44:  2803 
  • For examples, see:
  • 14a Yamashita M. Kojima M. Yoshida H. Ogata T. Inokawa S. Bull. Chem. Soc. Jpn.  1980,  53:  1625 
  • 14b Kojima M. Yamashita M. Yoshida H. Ogata T. Synthesis  1979,  147 
  • To the best of our knowledge, only two examples of a cycloaddition reaction using acyl phosphonates as a coupling partner have been reported. For a photochemical cycloaddition with aziridines, see:
  • 15a Gakis N. Heimgartner H. Schmid H. Helv. Chim. Acta  1975,  58:  748 
  • For hetero-Diels-Alder reactions involving α,β-unsaturated acyl phosphonates, see:
  • 15b Evans DA. Johnson JS. Olhava EJ. J. Am. Chem. Soc.  2000,  122:  1635 
  • For our accounts of [2+2+2] cycloadditions catalyzed by a cationic rhodium(I)-BINAP-type bisphosphine complex, see:
  • 16a Tanaka K. Synlett  2007,  1977 
  • 16b Tanaka K. Nishida G. Suda T. J. Synth. Org. Chem. Jpn.  2007,  65:  862 
  • 18 Equilibrium coordination of the ester carbonyl oxygen vs. the alkyne moiety of a malonate-linked 1,6-diyne is proposed in the Ru-catalyzed [2+2+2] cycloaddition of alkynes, see: Yamamoto Y. Arakawa T. Ogawa R. Itoh K. J. Am. Chem. Soc.  2003,  125:  12143 
17

In general, terminal alkynes are more reactive and coordinative toward rhodium than internal alkynes. Therefore, the reaction of terminal 1,6-diyne 1d with 2b results in the rapid homo-[2+2+2] cycloaddition of 1d via a rhodacyclopentadiene intermediate. On the other hand, the formation of the rhodacyclopentadiene intermediate from terminal 1,7-diyne 1h may be slower than that from terminal 1,6-diynes for steric reasons. Thus, the reaction of 1h with 2b may furnish the oxarhodacyclopentene intermediate. Insertion of another terminal alkyne moiety of 1h followed by reductive elimination of rhodium furnishes the corresponding cross-[2+2+2] cycloaddition product 3hb in good yield.

19

Typical Procedure (Table 2, entry 1) Under an argon atmosphere, H8-BINAP (12.6 mg, 0.02 mmol) and [Rh(cod)2]BF4 (8.1 mg, 0.02 mmol) were dissolved in CH2Cl2 (2.0 mL), and the mixture was stirred at r.t. for 5 min. Hydrogen was introduced to the resulting solution in a Schlenk tube. After stirring at r.t. for 1 h, the resulting solution was concentrated to dryness and dissolved in CH2Cl2 (0.5 mL). To this solution was added dropwise over 1 min a solution of diyne 1a (55.1 mg, 0.20 mmol) and acyl phosphonate 2a (72.1 mg, 0.40 mmol) in CH2Cl2 (1.0 mL) at r.t. The mixture was stirred at r.t. for 1 h. The resulting solution was concentrated and purified by a preparative TLC (hexane-EtOAc, 1:1), which furnished 3aa (76.2 mg, 0.017 mmol, 84% yield) as a pale yellow oil.
Compound 3aa: IR (neat): 3052, 2983, 2867, 1661, 1347, 1237, 1164, 1022, 671 cm. ¹H NMR (300 MHz, CDCl3): δ (E -isomer) = 7.74-7.63 (m, 2 H), 7.33-7.21 (m, 2 H), 4.49-4.19 (m, 4 H), 3.97-3.73 (m, 4 H), 2.37 (s, 3 H), 2.10 (s, 3 H), 1.90-1.77 (m, 6 H), 1.16 (t, J = 7.2 Hz, 6 H); δ (Z-isomer) = 7.74-7.63 (m, 2 H), 7.33-7.21 (m, 2 H), 4.30-4.19 (m, 4 H), 4.12-3.97 (m, 4 H), 2.38 (s, 3 H), 2.10 (s, 3 H), 1.90-1.77 (m, 3 H), 1.58 (dd, J = 13.5, 1.5 Hz, 3 H), 1.28 (t, J = 7.2 Hz, 6 H). ¹³C NMR (75 MHz, CDCl3): δ = 193.9, 149.6, 149.4, 143.6, 142.8, 142.7, 133.9, 131.6, 129.9, 129.7, 127.4, 126.4, 124.0, 61.64, 61.56, 58.87, 58.86, 55.2, 28.3, 27.9, 21.4, 20.0, 19.8, 16.2, 16.11, 16.10, 15.9, 15.8. ³¹P NMR (121 MHz, CDCl3): δ (E -isomer) = 17.8; δ (Z -isomer) = 17.9. ESI-HRMS: m/z calcd for C21H30NO6PSNa [M + Na]+: 478.1429; found: 478.1428.
Compound (E)-3ab: pale yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 7.51 (d, J = 8.4 Hz, 2 H), 7.28 (d, J = 8.4 Hz, 2 H), 7.16-7.00 (m, 3 H), 6.95-6.83 (m, 2 H), 4.12-3.87 (m, 8 H), 2.45 (s, 3 H), 2.29 (d, J = 3.3 Hz, 3 H), 2.17 (s, 3 H), 1.18 (t, J = 7.2 Hz, 6 H). ¹³C NMR (75 MHz, CDCl3): δ = 193.3, 159.8, 148.7, 148.4, 147.6, 147.4, 143.7, 136.9, 133.1, 132.4, 131.8, 129.9, 128.22, 128.16, 127.91, 127.89, 127.62, 127.58, 127.3, 62.1, 62.0, 57.9, 54.8, 28.8, 21.5, 20.3, 20.2, 16.2, 16.1. ³¹P NMR (121 MHz, CDCl3): δ = 14.5.
Compound (Z)-3ab: pale yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 7.76 (d, J = 8.4 Hz, 2 H), 7.41-7.24 (m, 5 H), 7.17-7.09 (m, 2 H), 4.52 (s, 2 H), 4.51-4.28 (m, 2 H), 3.92-3.67 (m, 2 H), 3.78-3.52 (m, 2 H), 2.40 (s, 3 H), 2.32 (s, 3 H), 1.68 (d, J = 2.7 Hz, 3 H), 1.04 (t, J = 7.2 Hz, 6 H). ¹³C NMR (75 MHz, CDCl3): δ = 193.9, 148.7, 148.6, 145.3, 145.2, 143.7, 136.0, 135.9, 134.0, 133.5, 132.04, 132.03, 131.1, 129.8, 128.83, 128.77, 128.53, 128.51, 127.83, 127.80, 127.5, 62.14, 62.06, 59.0, 55.3, 28.7, 21.5, 21.4, 21.2, 16.1, 16.0. ³¹P NMR (121 MHz, CDCl3): δ = 14.0.
Compound 3bb: pale yellow oil. ¹H NMR (300 MHz, CDCl3): δ (E -isomer) = 7.73 (d, J = 7.8 Hz, 2 H), 7.41-7.05 (m, 7 H), 4.60 (t, J = 4.2 Hz, 2 H), 4.37 (t, J = 4.2 Hz, 2 H), 3.91-3.77 (m, 2 H), 3.77-3.60 (m, 2 H), 3.36 (d, J = 0.9 Hz, 3H), 2.43 (s, 3 H), 2.38 (s, 3 H), 1.05 (t, J = 7.2 Hz, 6 H); δ (Z -isomer) = 7.57 (d, J = 7.5 Hz, 2 H), 7.41-7.05 (m, 5 H), 6.99 (d, J = 7.2 Hz, 2 H), 4.23 (t, J = 4.2 Hz, 2 H), 4.13-3.91 (m, 6 H), 3.82 (s, 3 H), 2.43 (s, 3 H), 2.22 (s, 3 H), 1.19 (t, J = 7.2 Hz, 6 H). ¹³C NMR (75 MHz, CDCl3): δ = 194.1, 193.7, 165.3, 164.8, 164.5, 143.7, 143.6, 141.0, 140.6, 140.5, 140.4, 140.3 138.7, 138.6, 138.5, 138.41, 138.38, 136.2, 136.0, 134.9, 134.8, 133.8, 133.7, 133.0, 129.8, 129.7, 128.6, 128.52, 128.49, 128.45, 128.22, 128.17, 127.9, 127.8, 127.6, 127.5, 127.4, 63.0, 62.9, 62.8, 59.88, 59.86, 59.3, 55.5, 55.3, 53.1, 52.5, 29.0, 28.8, 21.42, 21.38, 16.1, 16.0, 15.9. ³¹P NMR (121 MHz, CDCl3): δ (E -isomer) = 11.9; δ (Z -isomer) = 11.0.
Compound (E)-3ca: pale yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 7.73 (d, J = 8.1 Hz, 2 H), 7.35 (d, J = 8.1 Hz, 2 H), 7.29-7.16 (m, 1 H), 4.46-4.35 (m, 4 H), 4.18-4.03 (m, 4 H), 2.44 (s, 3 H), 2.21 (s, 3 H), 1.85 (dd, J = 15.0, 1.5 Hz, 3 H), 1.33 (t, J = 7.2 Hz, 6 H). ¹³C NMR (75 MHz, CDCl3): δ = 194.0, 144.2, 141.7, 141.3, 135.5, 134.8, 133.2, 133.1, 132.9, 132.5, 130.0, 127.5, 62.3, 62.2, 57.8, 55.0, 29.9, 21.5, 16.4, 16.3, 14.9, 14.8. ³¹P NMR (121 MHz, CDCl3): δ = 19.3.
Compound (Z)-3ca: pale yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 7.74 (d, J = 8.1 Hz, 2 H), 7.33 (d, J = 8.1 Hz, 2 H), 6.77-6.54 (m, 1 H), 4.51-4.43 (m, 2 H), 4.37-4.29 (m, 2 H), 4.07-3.90 (m, 4 H), 2.42 (s, 3 H), 2.20 (s, 3 H), 2.04 (dd, J = 13.2, 1.8 Hz, 3 H), 1.24 (t, J = 7.2 Hz, 6 H). ¹³C NMR (75 MHz, CDCl3): δ = 194.1, 143.9, 143.8, 143.7, 134.2, 134.0, 133.9, 133.6, 133.48, 133.47, 131.9, 129.8, 127.6, 62.1, 62.0, 59.1, 59.0, 55.0, 29.8, 22.1, 22.0, 21.5, 16.3, 16.2. ³¹P NMR (121 MHz, CDCl3): δ = 16.7.
Compound (E)-3eb: pale yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 7.25-7.15 (m, 3 H), 7.07-6.97 (m, 2 H), 4.12-3.91 (m, 4 H), 3.60 (s, 6 H), 3.10-3.02 (m, 2 H), 2.95 (s, 2 H), 2.35 (d, J = 3.3 Hz, 3 H), 2.18 (s, 3 H), 1.20 (t, J = 7.2 Hz, 6 H). ¹³C NMR (75 MHz, CDCl3): δ = 195.4, 171.0, 152.0, 151.7, 151.6, 151.4, 137.4, 137.3, 133.8, 129.8, 128.8, 128.7, 127.8, 127.5, 127.3, 61.9, 61.8, 56.8, 53.0, 44.9, 40.8, 29.0, 20.2, 20.1, 16.2, 16.1. ³¹P NMR (121 MHz, CDCl3): δ = 15.6.
Compound (Z)-3eb: pale yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 7.40-7.28 (m, 3 H), 7.22-7.16 (m, 2 H), 3.96-3.70 (m, 4 H), 3.74 (s, 6 H), 3.70-3.30 (m, 4 H), 2.33 (s, 3 H), 1.79 (d, J = 2.4 Hz, 3 H), 1.10 (t, J = 7.2 Hz, 6 H). ¹³C NMR (75 MHz, CDCl3): δ = 195.8 152.4, 152.2, 150.1, 150.0, 136.8, 136.6, 133.9, 130.5, 129.11, 129.05, 128.4, 128.0, 127.5, 127.4, 61.9, 61.8, 57.3, 53.0, 45.6, 41.0, 28.9, 21.1, 20.9, 16.1, 16.0. ³¹P NMR (121 MHz, CDCl3): δ = 14.7.
Compound (E)-3ha: pale yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 9.66 (s, 1 H), 7.14-7.00 (m, 1 H), 4.20-3.95 (m, 4 H), 2.34-2.14 (m, 4 H), 1.77 (dd, J = 14.4, 1.8 Hz, 3 H), 1.75-1.59 (m, 4 H), 1.34 (t, J = 7.2 Hz, 6 H). ¹³C NMR (75 MHz, CDCl3): δ = 192.2, 154.0, 153.7, 140.9, 140.7, 135.6, 131.6, 129.2, 62.0, 61.9, 30.6, 21.7, 21.6, 21.2, 16.4, 16.3, 14.2, 14.1. ³¹P NMR (121 MHz, CDCl3): δ = 20.3.
Compound (Z)-3ha: pale yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 9.79 (s, 1 H), 6.70-6.60 (m, 1 H), 4.12-3.92 (m, 4 H), 2.35-2.15 (m, 4 H), 2.04 (dd, J = 13.2, 1.8 Hz, 3 H), 1.74-1.56 (m, 4 H), 1.28 (t, J = 7.2 Hz, 6 H). ¹³C NMR (75 MHz, CDCl3): δ = 192.6, 155.6, 155.5, 141.0, 140.9, 135.1, 131.7, 129.3, 61.7, 61.6, 31.4, 21.8, 21.7, 21.6, 21.5, 21.1, 16.4, 16.3. ³¹P NMR (121 MHz, CDCl3): δ = 17.6.
Compound (E)-3hb: pale yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 9.85 (s, 1 H), 7.54 (d, J = 23.1 Hz, 1 H), 7.32-7.13 (m, 5 H), 4.18-3.99 (m, 4 H), 2.16-2.00 (m, 4 H), 1.57-1.41 (m, 4 H), 1.26 (t, J = 7.2 Hz, 6 H). ¹³C NMR (75 MHz, CDCl3): δ = 191.6, 153.3, 153.0, 142.4, 142.2, 137.3, 135.9, 135.0, 134.4, 134.3, 128.6, 128.5, 128.4, 128.20, 128.17, 62.5, 62.4, 30.92, 30.90, 21.7, 21.0, 16.3, 16.2. ³¹P NMR (121 MHz, CDCl3): δ = 17.2.
Compound (Z)-3hb: pale yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 9.93 (s, 1 H), 7.45-7.31 (m, 5 H), 7.08-6.88 (m, 1 H), 4.08-3.83 (m, 4 H), 2.50-2.38 (m, 2 H), 2.34-2.21 (m, 2 H), 1.75-1.64 (m, 4 H), 1.18 (t, J = 7.2 Hz, 6 H). ¹³C NMR (75 MHz, CDCl3): δ = 192.4, 155.5, 155.4, 144.4, 144.3, 138.5, 138.4, 137.7, 135.3, 135.17, 135.15, 128.3, 128.12, 128.05, 62.1, 62.0, 31.24, 31.21, 21.9, 21.7, 21.1, 16.2, 16.1. ³¹P NMR (121 MHz, CDCl3): δ = 15.1.