References and Notes
-
1a
Varki A.
Cummings R.
Esko J.
Freeze H.
Hart G.
Marth J.
Essentials of Glycobiology
Cold
Spring Harbor Laboratory Press;
New York:
1999.
-
1b
Dwek RA.
Butters TA.
Chem.
Rev.
2002,
102:
283
-
2a
Frechet JM.
Schuerch C.
J.
Am. Chem. Soc.
1971,
93:
492
-
2b
Danishefsky SJ.
McClure KF.
Randolph JT.
Ruggeri RB.
Science
1993,
260:
1307
-
2c
Seeberger PH.
Haase W.-C.
Chem. Rev.
2000,
100:
4349
-
Recent reports of solid-supported
glycosylations:
-
3a
Liang R.
Yan L.
Loebach J.
Ge M.
Uozumi Y.
Sekanina K.
Horan N.
Gildersleeve J.
Thompson C.
Smith A.
Biswas K.
Still WC.
Kahne D.
Science
1996,
274:
1520
-
3b
Nicolaou KC.
Watanabe N.
Li J.
Pastor J.
Winssinger N.
Angew.
Chem. Int. Ed.
1998,
37:
1559
-
3c
Andrade RB.
Plante OJ.
Melean LG.
Seeberger PH.
Org.
Lett.
1999,
1:
1811
-
3d
Hummel G.
Hindsgaul O.
Angew. Chem. Int. Ed.
1999,
38:
1782
-
3e
Roussel F.
Knerr L.
Grathwohl M.
Schmidt RR.
Org. Lett.
2000,
2:
3043
-
3f
Plante OJ.
Palmacci ER.
Seeberger PH.
Science
2001,
291:
1523
-
3g
Lam SN.
Gervay-Hague J.
Carbohydr. Res.
2002,
337:
1953
-
3h
Wu X.
Grathwohl M.
Schmidt RR.
Angew.
Chem. Int. Ed.
2002,
41:
4489
-
3i
Mogemark M.
Elofsson M.
Kihlberg J.
J.
Org. Chem.
2003,
68:
7281
-
3j
Ratner DM.
Swanson ER.
Seeberger PH.
Org. Lett.
2003,
5:
4717
-
3k
Mogemark M.
Gustafsson L.
Bengtsson C.
Elofsson M.
Kihlberg J.
Org.
Lett.
2004,
6:
4885
-
3l
Love KR.
Seeberger PH.
Angew.
Chem. Int. Ed.
2004,
43:
602
-
3m
Jaunzems J.
Kashin D.
Schönberger A.
Kirschning A.
Eur. J. Org. Chem.
2004,
3435
-
3n
Ako T.
Daikoku S.
Ohtsuka I.
Kato R.
Kanie O.
Chem.
Asian J.
2006,
1:
798
-
3o
Kanie O.
Ohtsuka I.
Ako T.
Daikoku S.
Kanie Y.
Kato R.
Angew.
Chem. Int. Ed.
2006,
45:
3851
-
3p
Jonke S.
Liu K.-g.
Schmidt RR.
Chem.
Eur. J.
2006,
12:
1274
-
3q
Matsushita T.
Hinou H.
Fumoto M.
Kurogochi M.
Fujitani N.
Shimizu H.
Nishimura S.-I.
J.
Org. Chem.
2006,
71:
3051
-
3r
Doi T.
Kinbara A.
Inoue H.
Takahashi T.
Chem. Asian J.
2007,
2:
188
-
3s
Manabe S.
Ueki A.
Ito Y.
Chem.
Commun.
2007,
3673
-
4a
Ando H.
Manabe S.
Nakahara Y.
Ito Y.
Angew. Chem.
Int. Ed.
2001,
40:
4725
-
4b
Egusa K.
Kusumoto S.
Fukase K.
Synlett
2001,
777
-
4c
Ito Y.
Manabe S.
Chem. Eur. J.
2002,
8:
3077
-
4d
Egusa K.
Kusumoto S.
Fukase K.
Eur.
J. Org. Chem.
2003,
3435
-
4e
Hanashima S.
Manabe S.
Ito Y.
Synlett
2003,
979
-
4f
MacCoss RN.
Brennan PE.
Ley SV.
Org. Biomol. Chem.
2003,
1:
2029
-
4g
Hanashima S.
Manabe S.
Inamori K.-I.
Taniguchi N.
Ito Y.
Angew.
Chem. Int. Ed.
2004,
43:
5674
-
4h
Komba S.
Kitaoka M.
Kasumi T.
Eur.
J. Org. Chem.
2005,
5313
-
4i
Fukase K.
Takashina M.
Hori Y.
Tanaka D.
Tanaka K.
Kusumoto S.
Synlett
2005,
2342
-
4j
Hanashima S.
Manabe S.
Ito Y.
Angew.
Chem. Int. Ed.
2005,
44:
4218
-
4k
Wu J.
Guo Z.
J. Org. Chem.
2006,
71:
7067
-
The glycosylations using fluorous
tags:
-
5a
Curran DP.
Ferritto R.
Hua Y.
Tetrahedron
Lett.
1998,
39:
4937
-
5b
Goto K.
Miura T.
Mizuno M.
Takaki H.
Imai N.
Murakami Y.
Inazu T.
Synlett
2004,
2221
-
5c
Jing Y.
Huang X.
Tetrahedron Lett.
2004,
45:
4615
-
5d
Miura T.
Inazu T.
Tetrahedron Lett.
2003,
44:
1819
-
5e
Manzoni L.
Castelli R.
Org. Lett.
2004,
6:
4195
-
5f
Mizuno M.
Matsumoto H.
Goto K.
Hamasaki K.
Tetrahedron Lett.
2006,
47:
8831
-
5g The glycosylation using
ionic tag: Kojima M.
Nakamura Y.
Takeuchi S.
Tetrahedron Lett.
2007,
48:
4431
-
5h
Pathak AK.
Yerneni CK.
Young Z.
Pathak V.
Org. Lett.
2008,
10:
145
-
6a
Bauer J.
Rademann J.
J.
Am. Chem. Soc.
2005,
127:
7296
-
6b An affinity of polyethylene
glycol linker with silica gel was used for purification of glycoside.
See: Jiang L.
Hartley RC.
Chan T.-H.
Chem. Commun.
1996,
2193
- 7 The synthesis of rhamnoside by using p-dodecyloxybenzyl ether as a protection
of an alcohol at C-2 was reported. See: Pozsgay V.
Org.
Lett.
1999,
1:
477
- 8
Critchley P.
Clarkson GJ.
Org. Biomol. Chem.
2003,
1:
4148
- 9 The Cu(OTf)2-prompted
glycosylation in benzotrifluoride was reported. See: Yamada H.
Hayashi T.
Carbohydr.
Res.
2002,
337:
581
- 10
Eckhardt M.
Barth H.
Blöcker D.
Aktories K.
J. Biol. Chem.
2000,
275:
2328
11
Synthesis of Trisaccharide
8 Using an ODS Adsorption Method - General Procedure
To
a stirred suspension of Cu(OTf)2 (30 mg, 0.084 mmol) and
4 Å MS (powder, 50 mg) in anhyd CH2Cl2 (3
mL) was added a solution of diol 6 (300
mg, 0.42 mmol) at r.t., and the mixture was stirred for 20 min.
To this was added a solution of trichloroacetimidate 7 (936
mg, 1.47 mmol) in CH2Cl2 (3 mL) using a syringe
drive over a period of 1 h, and the mixture was stirred for 12 h
at the same temperature. The reaction was terminated by the addition
of Et3N (720 mg, 7.12 mmol). Insoluble material was removed
by passing through a cotton Celite pad, and the filtrate was concentrated under
reduced pressure. The resulting material was dissolved in MeCN (100
mL) and adsorbed onto an ODS column (20 g), and the polar byproducts
were eluted with MeCN (100 mL). Trisaccharide 8 (666
mg, 95% yield) was recovered by the elution with CH2Cl2.
Compound 8: [α]D
²² +41.5
(c 1.9, CHCl3). FT-IR (neat): 3087,
3062, 3004, 2925, 2855, 1951, 1878, 1809, 1745, 1611, 1585, 1511,
1496, 1454, 1368, 1285, 1237, 1132, 1101, 1050, 1026, 981, 913,
840, 736, 699, 604 cm-¹. ¹H NMR
(400 MHz, CDCl3): δ = 0.89 (3 H, t, J = 6.8 Hz),
1.27-1.46 (22 H, m), 1.74-1.81 (2 H, m), 2.01-2.07
(4 H, m), 2.09 (3 H, s), 2.17 (3 H, s), 3.61-3.70 (3 H,
m), 3.73-3.78 (2 H, m), 3.82-3.95 (11 H, m), 3.99
(1 H, dd, J = 9.2,
3.2 Hz), 4.03 (1 H, dd, J = 9.2,
3.2 Hz), 4.19 (1 H, dd, J = 9.6,
3.2 Hz), 4.31 (1 H, d, J = 11.6
Hz), 4.41-4.70 (12 H, m), 4.54 (1 H, d, J = 11.6
Hz), 4.76 (1 H, d, J = 11.2
Hz), 4.83 (1 H, d, J = 1.6
Hz), 4.88 (2 H, dd, J = 10.8,
3.2 Hz), 4.98 (1 H, d, J = 2.0
Hz), 5.20 (1 H, d, J = 1.6
Hz), 5.33-5.41 (2 H, m), 5.50-5.52 (2 H, m), 6.75-6.78
(2 H, m), 7.12-7.35 (42 H, m). ¹³C
NMR (100 MHz, CDCl3): δ = 14.4 (q),
21.3 (q), 21.5 (q), 22.3 (t), 26.3 (t), 27.4 (t), 29.5-30.0
(many t), 32.2 (t), 32.9 (t), 66.7 (t), 68.2 (t), 68.7 (d, 2 C),
68.9 (t), 69.0 (d), 69.2 (t), 71.5 (d), 71.6 (d, 2 C), 72.0 (t),
72.4 (d), 72.4 (t), 73.6 (t), 73.6 (t), 74.4 (d), 74.5 (d), 75.2
(t), 75.3 (d), 75.4 (t), 77.5 (d), 77.8 (d), 77.9 (d), 78.3 (d),
79.0 (d), 95.7 (d), 98.2 (d), 99.9 (d), 114.6 (d), 127.7-130.2
(many d), 138.0 (s), 138.1 (s), 138.1 (s), 138.3 (s), 138.5 (s),
138.5 (s), 138.8 (s), 138.9 (s), 159.0 (s), 170.4 (s), 170.6 (s).
MS (FAB, m-NBA): m/z = 1689 [M + Na]+.
HRMS (FAB): m/z calcd for C103H124O19Na [M + Na]+:
1687.8635; found: 1687.8654.
12 No other products were detected in
the ¹³C NMR spectrum of the saccharide.
13 In the reaction using 2-acetylated
trichloroacetimidate as glycosyl donor, an ortho ester such as 22 was produced as an intermediate. By
continuing treatment with Cu(OTf)2 (12 h), the ortho
ester was transformed to the desired glycoside (Figure
[²]
).
14 The anomeric stereochemistry of 12 was determined from the coupling constants J
CH for anomeric carbons (164
Hz). Although the β-isomer was separable using HPLC, it
was not possible to determine the stereochemistry by NMR spectroscopy
due to insufficient sample. However, as the high-resolution mass
spectrum suggested the structure of a tetrasaccharide, we concluded
the stereochemistry is β.
15 Compound 16 was
prepared in 96% yield from the disaccharide 19 by
treatment with HF˙pyridine.