Subscribe to RSS
DOI: 10.1055/s-2008-1077948
Efficient Glycosylation Using ODS Adsorption Method Based on the Affinity of Long Alkoxybenzyl Glycoside
Publication History
Publication Date:
15 July 2008 (online)
Abstract
p-Oleyloxybenzyl (POB) glycoside, selectively removable with TMSOTf, was developed as a protecting group for the glycosyl acceptor. Activation of the trichloroacetimidate was efficiently accomplished using 20 mol% of Cu(OTf)2. Purification of the resulting glycoside was rapidly and efficiently accomplished by an ODS adsorption method based on the significant affinity of long alkyl chains and the ODS. The procedure is particularly useful for convergent oligosaccharide synthesis.
Key words
glycosylations - glycosides - octadecylsilane - p-oleyloxybenzyl ether - ODS adsorption
-
1a
Varki A.Cummings R.Esko J.Freeze H.Hart G.Marth J. Essentials of Glycobiology Cold Spring Harbor Laboratory Press; New York: 1999. -
1b
Dwek RA.Butters TA. Chem. Rev. 2002, 102: 283 -
2a
Frechet JM.Schuerch C. J. Am. Chem. Soc. 1971, 93: 492 -
2b
Danishefsky SJ.McClure KF.Randolph JT.Ruggeri RB. Science 1993, 260: 1307 -
2c
Seeberger PH.Haase W.-C. Chem. Rev. 2000, 100: 4349 - Recent reports of solid-supported glycosylations:
-
3a
Liang R.Yan L.Loebach J.Ge M.Uozumi Y.Sekanina K.Horan N.Gildersleeve J.Thompson C.Smith A.Biswas K.Still WC.Kahne D. Science 1996, 274: 1520 -
3b
Nicolaou KC.Watanabe N.Li J.Pastor J.Winssinger N. Angew. Chem. Int. Ed. 1998, 37: 1559 -
3c
Andrade RB.Plante OJ.Melean LG.Seeberger PH. Org. Lett. 1999, 1: 1811 -
3d
Hummel G.Hindsgaul O. Angew. Chem. Int. Ed. 1999, 38: 1782 -
3e
Roussel F.Knerr L.Grathwohl M.Schmidt RR. Org. Lett. 2000, 2: 3043 -
3f
Plante OJ.Palmacci ER.Seeberger PH. Science 2001, 291: 1523 -
3g
Lam SN.Gervay-Hague J. Carbohydr. Res. 2002, 337: 1953 -
3h
Wu X.Grathwohl M.Schmidt RR. Angew. Chem. Int. Ed. 2002, 41: 4489 -
3i
Mogemark M.Elofsson M.Kihlberg J. J. Org. Chem. 2003, 68: 7281 -
3j
Ratner DM.Swanson ER.Seeberger PH. Org. Lett. 2003, 5: 4717 -
3k
Mogemark M.Gustafsson L.Bengtsson C.Elofsson M.Kihlberg J. Org. Lett. 2004, 6: 4885 -
3l
Love KR.Seeberger PH. Angew. Chem. Int. Ed. 2004, 43: 602 -
3m
Jaunzems J.Kashin D.Schönberger A.Kirschning A. Eur. J. Org. Chem. 2004, 3435 -
3n
Ako T.Daikoku S.Ohtsuka I.Kato R.Kanie O. Chem. Asian J. 2006, 1: 798 -
3o
Kanie O.Ohtsuka I.Ako T.Daikoku S.Kanie Y.Kato R. Angew. Chem. Int. Ed. 2006, 45: 3851 -
3p
Jonke S.Liu K.-g.Schmidt RR. Chem. Eur. J. 2006, 12: 1274 -
3q
Matsushita T.Hinou H.Fumoto M.Kurogochi M.Fujitani N.Shimizu H.Nishimura S.-I. J. Org. Chem. 2006, 71: 3051 -
3r
Doi T.Kinbara A.Inoue H.Takahashi T. Chem. Asian J. 2007, 2: 188 -
3s
Manabe S.Ueki A.Ito Y. Chem. Commun. 2007, 3673 -
4a
Ando H.Manabe S.Nakahara Y.Ito Y. Angew. Chem. Int. Ed. 2001, 40: 4725 -
4b
Egusa K.Kusumoto S.Fukase K. Synlett 2001, 777 -
4c
Ito Y.Manabe S. Chem. Eur. J. 2002, 8: 3077 -
4d
Egusa K.Kusumoto S.Fukase K. Eur. J. Org. Chem. 2003, 3435 -
4e
Hanashima S.Manabe S.Ito Y. Synlett 2003, 979 -
4f
MacCoss RN.Brennan PE.Ley SV. Org. Biomol. Chem. 2003, 1: 2029 -
4g
Hanashima S.Manabe S.Inamori K.-I.Taniguchi N.Ito Y. Angew. Chem. Int. Ed. 2004, 43: 5674 -
4h
Komba S.Kitaoka M.Kasumi T. Eur. J. Org. Chem. 2005, 5313 -
4i
Fukase K.Takashina M.Hori Y.Tanaka D.Tanaka K.Kusumoto S. Synlett 2005, 2342 -
4j
Hanashima S.Manabe S.Ito Y. Angew. Chem. Int. Ed. 2005, 44: 4218 -
4k
Wu J.Guo Z. J. Org. Chem. 2006, 71: 7067 - The glycosylations using fluorous tags:
-
5a
Curran DP.Ferritto R.Hua Y. Tetrahedron Lett. 1998, 39: 4937 -
5b
Goto K.Miura T.Mizuno M.Takaki H.Imai N.Murakami Y.Inazu T. Synlett 2004, 2221 -
5c
Jing Y.Huang X. Tetrahedron Lett. 2004, 45: 4615 -
5d
Miura T.Inazu T. Tetrahedron Lett. 2003, 44: 1819 -
5e
Manzoni L.Castelli R. Org. Lett. 2004, 6: 4195 -
5f
Mizuno M.Matsumoto H.Goto K.Hamasaki K. Tetrahedron Lett. 2006, 47: 8831 -
5g The glycosylation using
ionic tag:
Kojima M.Nakamura Y.Takeuchi S. Tetrahedron Lett. 2007, 48: 4431 -
5h
Pathak AK.Yerneni CK.Young Z.Pathak V. Org. Lett. 2008, 10: 145 -
6a
Bauer J.Rademann J. J. Am. Chem. Soc. 2005, 127: 7296 -
6b An affinity of polyethylene
glycol linker with silica gel was used for purification of glycoside.
See:
Jiang L.Hartley RC.Chan T.-H. Chem. Commun. 1996, 2193 - 7 The synthesis of rhamnoside by using p-dodecyloxybenzyl ether as a protection
of an alcohol at C-2 was reported. See:
Pozsgay V. Org. Lett. 1999, 1: 477 - 8
Critchley P.Clarkson GJ. Org. Biomol. Chem. 2003, 1: 4148 - 9 The Cu(OTf)2-prompted
glycosylation in benzotrifluoride was reported. See:
Yamada H.Hayashi T. Carbohydr. Res. 2002, 337: 581 - 10
Eckhardt M.Barth H.Blöcker D.Aktories K. J. Biol. Chem. 2000, 275: 2328
References and Notes
Synthesis of Trisaccharide
8 Using an ODS Adsorption Method - General Procedure
To
a stirred suspension of Cu(OTf)2 (30 mg, 0.084 mmol) and
4 Å MS (powder, 50 mg) in anhyd CH2Cl2 (3
mL) was added a solution of diol 6 (300
mg, 0.42 mmol) at r.t., and the mixture was stirred for 20 min.
To this was added a solution of trichloroacetimidate 7 (936
mg, 1.47 mmol) in CH2Cl2 (3 mL) using a syringe
drive over a period of 1 h, and the mixture was stirred for 12 h
at the same temperature. The reaction was terminated by the addition
of Et3N (720 mg, 7.12 mmol). Insoluble material was removed
by passing through a cotton Celite pad, and the filtrate was concentrated under
reduced pressure. The resulting material was dissolved in MeCN (100
mL) and adsorbed onto an ODS column (20 g), and the polar byproducts
were eluted with MeCN (100 mL). Trisaccharide 8 (666
mg, 95% yield) was recovered by the elution with CH2Cl2.
Compound 8: [α]D
²² +41.5
(c 1.9, CHCl3). FT-IR (neat): 3087,
3062, 3004, 2925, 2855, 1951, 1878, 1809, 1745, 1611, 1585, 1511,
1496, 1454, 1368, 1285, 1237, 1132, 1101, 1050, 1026, 981, 913,
840, 736, 699, 604 cm-¹. ¹H NMR
(400 MHz, CDCl3): δ = 0.89 (3 H, t, J = 6.8 Hz),
1.27-1.46 (22 H, m), 1.74-1.81 (2 H, m), 2.01-2.07
(4 H, m), 2.09 (3 H, s), 2.17 (3 H, s), 3.61-3.70 (3 H,
m), 3.73-3.78 (2 H, m), 3.82-3.95 (11 H, m), 3.99
(1 H, dd, J = 9.2,
3.2 Hz), 4.03 (1 H, dd, J = 9.2,
3.2 Hz), 4.19 (1 H, dd, J = 9.6,
3.2 Hz), 4.31 (1 H, d, J = 11.6
Hz), 4.41-4.70 (12 H, m), 4.54 (1 H, d, J = 11.6
Hz), 4.76 (1 H, d, J = 11.2
Hz), 4.83 (1 H, d, J = 1.6
Hz), 4.88 (2 H, dd, J = 10.8,
3.2 Hz), 4.98 (1 H, d, J = 2.0
Hz), 5.20 (1 H, d, J = 1.6
Hz), 5.33-5.41 (2 H, m), 5.50-5.52 (2 H, m), 6.75-6.78
(2 H, m), 7.12-7.35 (42 H, m). ¹³C
NMR (100 MHz, CDCl3): δ = 14.4 (q),
21.3 (q), 21.5 (q), 22.3 (t), 26.3 (t), 27.4 (t), 29.5-30.0
(many t), 32.2 (t), 32.9 (t), 66.7 (t), 68.2 (t), 68.7 (d, 2 C),
68.9 (t), 69.0 (d), 69.2 (t), 71.5 (d), 71.6 (d, 2 C), 72.0 (t),
72.4 (d), 72.4 (t), 73.6 (t), 73.6 (t), 74.4 (d), 74.5 (d), 75.2
(t), 75.3 (d), 75.4 (t), 77.5 (d), 77.8 (d), 77.9 (d), 78.3 (d),
79.0 (d), 95.7 (d), 98.2 (d), 99.9 (d), 114.6 (d), 127.7-130.2
(many d), 138.0 (s), 138.1 (s), 138.1 (s), 138.3 (s), 138.5 (s),
138.5 (s), 138.8 (s), 138.9 (s), 159.0 (s), 170.4 (s), 170.6 (s).
MS (FAB, m-NBA): m/z = 1689 [M + Na]+.
HRMS (FAB): m/z calcd for C103H124O19Na [M + Na]+:
1687.8635; found: 1687.8654.
No other products were detected in the ¹³C NMR spectrum of the saccharide.
13In the reaction using 2-acetylated trichloroacetimidate as glycosyl donor, an ortho ester such as 22 was produced as an intermediate. By continuing treatment with Cu(OTf)2 (12 h), the ortho ester was transformed to the desired glycoside (Figure [²] ).
14The anomeric stereochemistry of 12 was determined from the coupling constants J CH for anomeric carbons (164 Hz). Although the β-isomer was separable using HPLC, it was not possible to determine the stereochemistry by NMR spectroscopy due to insufficient sample. However, as the high-resolution mass spectrum suggested the structure of a tetrasaccharide, we concluded the stereochemistry is β.
15Compound 16 was prepared in 96% yield from the disaccharide 19 by treatment with HF˙pyridine.