Synlett 2008(5): 739-744  
DOI: 10.1055/s-2008-1042765
CLUSTER
© Georg Thieme Verlag Stuttgart · New York

An Unexpected Reversal of Diastereoselectivity in the [4+3]-Cycloaddition Reaction of Nitrogen-Stabilized Oxyallyl Cations with Methyl 2-Furoate

Jennifer E. Antoline, Richard P. Hsung*
Division of Pharmaceutical Sciences and Department of Chemistry, University of Wisconsin-Madison, 777 Highland Avenue, Rennebohm Hall, Madison, WI 53705, USA
Fax: +1(608)2625345; e-Mail: rhsung@wisc.edu;
Further Information

Publication History

Received 27 November 2007
Publication Date:
26 February 2008 (online)

Abstract

An unexpected reversal of diastereoselectivity in the [4+3] cycloaddition of methyl 2-fuorate with nitrogen-stabilized oxyallyl cations derived from epoxidation of chiral allenamides is described here. This intriguing reversal in favor of the endo-II cycloaddition pathway is likely a result of minimizing the dipole interaction between the oxyallyl cation and ester carbonyl of methyl 2-fuorate.

    References and Notes

  • For excellent reviews on heteroatom-substituted oxyallyl cations, see:
  • 1a Harmata M. Adv. Synth. Catal.  2006,  348:  2297 
  • 1b Harmata M. Recent Res. Dev. Org. Chem.  1997,  1:  523 
  • For general reviews, see:
  • 2a Hartung IV. Hoffmann HMR. Angew. Chem. Int. Ed.  2004,  43:  1934 
  • 2b Harmata M. Rashatasakhon P. Tetrahedron  2003,  59:  2371 
  • 2c Harmata M. Acc. Chem. Res.  2001,  34:  595 
  • Also see:
  • 2d Davies HML. In Advances in Cycloaddition   Vol. 5:  Harmata M. JAI; Greenwich: 1998.  p.119 
  • 2e West FG. In Advances in Cycloaddition   Vol. 4:  Lautens M. JAI; Greenwich: 1997.  p.1 
  • 2f Rigby JH. Pigge FC. Org. React.  1997,  51:  351 
  • 2g Harmata M. Tetrahedron  1997,  53:  6235 
  • For some examples of other heteroatom-substituted oxyallyl cations, see:
  • 3a Harmata M. Wacharasindhu S. Org. Lett.  2005,  7:  2563 
  • 3b Sáez JA. Arnó M. Domingo LR. Tetrahedron  2005,  61:  7538 
  • 3c Harmata M. Kahraman M. Adenu G. Barnes CL. Heterocycles  2004,  62:  583 
  • 3d Sáez JA. Arnó M. Domingo LR. Org. Lett.  2003,  5:  4117 
  • 3e Funk RL. Aungst RA. Org. Lett.  2001,  3:  3553 
  • 3f Harmata M. Sharma U. Org. Lett.  2000,  2:  2703 
  • 3g Lee K. Cha JK. Org. Lett.  1999,  1:  523 
  • 3h Masuya K. Domon K. Tanino K. Kuwajima I. J. Am. Chem. Soc.  1998,  120:  1724 
  • 3i Harmata M. Elomari S. Barnes CJ. J. Am. Chem. Soc.  1996,  118:  2860 ; and references cited within
  • For recent stereoselective attempts, see:
  • 4a Davies HML. Dai X. J. Am. Chem. Soc.  2004,  126:  2693 
  • 4b Prié G. Prévost N. Twin H. Fernandes SA. Hayes JF. Shipman M. Angew. Chem. Int. Ed.  2004,  43:  6517 
  • 4c Grainger RS. Owoare RB. Tisselli P. Steed JW. J. Org. Chem.  2003,  68:  7899 
  • 4d Montanã A. M., Grima P. M.; Tetrahedron; 2002, 58: 4769
  • 4e Beck H. Stark CBW. Hoffman HMR. Org. Lett.  2000,  2:  883 ; and reference 11 cited within
  • 4f Harmata M. Rashatasakhon P. Synlett  2000,  1419 
  • 4g Cho SY. Lee JC. Cha JK. J. Org. Chem.  1999,  64:  3394 
  • 4h Harmata M. Jones DE. Kahraman M. Sharma U. Barnes CL. Tetrahedron Lett.  1999,  40:  1831 
  • 4i Kende AS. Huang H. Tetrahedron Lett.  1997,  38:  3353 
  • 4j Harmata M. Jones DE. J. Org. Chem.  1997,  62:  4885 
  • 5 Harmata M. Ghosh SK. Hong X. Wacharasindu S. Kirchhoefer P. J. Am. Chem. Soc.  2003,  125:  2058 
  • 6 For a recent account that constitutes an enantioselective formal [4+3] cycloaddition, see: Dai X. Davies HML. Adv. Synth. Catal.  2006,  348:  2449 
  • 7 For a compendium on the chemistry of allenes, see: Krause N. Hashmi ASK. Modern Allene Chemistry   Vol. 1 and 2:  Wiley-VCH; Weinheim: 2004. 
  • For reviews on the chemistry and synthesis of allenamides, see:
  • 8a Hsung RP. Wei L.-L. Xiong H. Acc. Chem. Res.  2003,  36:  773 
  • 8b Tracey MR. Hsung RP. Antoline J. Kurtz KCM. Shen L. Slafer BW. Zhang Y. In Science of Synthesis, Houben-Weyl Methods of Molecular Transformations   Weinreb SM. Thieme; Stuttgart: 2005.  Chap. 21.4.
  • For recent reports on the allenamide chemistry, see:
  • 9a Watanabe T. Oishi S. Fuji N. Ohno H. Org. Lett.  2007,  9  in press
  • 9b Hyland CJT. Hegedus LS. J. Org. Chem.  2006,  71:  8658 
  • 9c Parthasarathy K. Jeganmohan M. Cheng C.-H. Org. Lett.  2006,  8:  621 
  • 9d Fenández I. Monterde MI. Plumet J. Tetrahedron Lett.  2005,  46:  6029 
  • 9e de los Rios C. Hegedus LS. J. Org. Chem.  2005,  70:  6541 
  • 9f Alouane N. Bernaud F. Marrot J. Vrancken E. Mangeney P. Org. Lett.  2005,  7:  5797 
  • 9g Hyland CJT. Hegedus LS. J. Org. Chem.  2005,  70:  8628 
  • For our recent efforts, see:
  • 10a Song Z. Hsung RP. Lu T. Lohse AG. J. Org. Chem.  2007,  72: in press
  • 10b Song Z. Hsung RP. Org. Lett.  2007,  9:  2199 
  • 10c Huang J. Ianni JC. Antoline JE. Hsung RP. Kozlowski MC. Org. Lett.  2006,  8:  1565 
  • 10d Berry CR. Hsung RP. Antoline JE. Petersen ME. Rameshkumar C. Nielson JA. J. Org. Chem.  2005,  70:  4038 
  • 10e Shen L. Hsung RP. Zhang Y. Antoline JE. Zhang X. Org. Lett.  2005,  7:  3081 
  • For leading examples of nitrogen-stabilized oxyallyl cations in [4+3] cycloadditions, see:
  • 11a MaGee DI. Godineau E. Thornton PD. Walters MA. Sponholtz DJ. Eur. J. Org. Chem.  2006,  3667 
  • 11b Myers AG. Barbay JK. Org. Lett.  2001,  3:  425 
  • 11c Sung MJ. Lee HI. Chong Y. Cha JK. Org. Lett.  1999,  1:  2017 
  • 11d Walters MA. Arcand HR. J. Org. Chem.  1996,  61:  1478 
  • 11e Walters MA. Arcand HR. Lawrie DJ. Tetrahedron Lett.  1995,  36:  23 
  • 11f Dennis N. Ibrahim B. Katritzky AR. J. Chem. Soc., Perkin Trans. 1  1976,  2307 
  • 12 Rameshkumar C. Xiong H. Tracey MR. Berry CR. Yao LJ. Hsung RP. J. Org. Chem.  2002,  67:  1339 
  • 13 For our asymmetric [4+3] cycloaddition, see: Xiong H. Hsung RP. Berry CR. Rameshkumar C. J. Am. Chem. Soc.  2001,  123:  7174 
  • 14 Antoline JE. Hsung RP. Huang J. Song Z. Li G. Org. Lett.  2007,  9:  1275 
  • 15 Xiong H. Huang J. Ghosh SK. Hsung RP. J. Am. Chem. Soc.  2003,  125:  12694 
  • Rameshkumar C. Hsung RP. Angew. Chem. Int. Ed.  2004,  43:  615 
  • For a very recent account on intramolecular [4+3] cycloadditions of allenyl dienes employing PtCl2 as a catalyst, see:
  • 16b Trillo B. López F. Gulías M. Castedo L. Mascareñas LJ. Angew. Chem. Int. Ed.   2008,  47:  951 
  • For a review, see:
  • 17a Hoffmann HMR. Angew. Chem., Int. Ed. Engl.  1973,  12:  819 ; Angew. Chem. 1973, 85, 877
  • 17b Also see: Hoffmann HMR. Joy DR. J. Chem. Soc. B  1968,  1182 
  • 18 Huang J. Hsung RP. J. Am. Chem. Soc.  2005,  127:  50 
  • 22 Sibi MP. Porter NA. Acc. Chem. Res.  1999,  32:  163 
19

General Procedure for the [4+3] Cycloaddition To a solution of the allenamide in CH2Cl2 [0.10 M] was added the appropriate furan (3.0-6.0 equiv) and 4 Å pulverized MS (0.50 g). The reaction solution was cooled to -78 °C, and ZnCl2 (2.0 equiv, 1.0 M in Et2O) was added. Then, DMDO in acetone (4.0-6.0 equiv) was added as a chilled solution (at -78 °C) via syringe pump over 3-4 h. The syringe pump was cooled by dry ice the entire addition time. After the addition the reaction mixture was stirred for another 14 h. The reaction was then quenched with sat. aq NaHCO3, filtered through Celite®, concentrated in vacuo, partitioned with CH2Cl2, extracted [4 × 20 mL], dried over Na2SO4, and concentrated in vacuo. The crude residue was purified via silica gel column chromatography (gradient eluent: 10-75% EtOAc in hexane).

20

In our intermolecular nitrogen stabilized oxyallyl cation [4+3] cycloadditions, for electron-rich furans, while some of the low-yielding reactions are due to decomposition of the epoxidized starting allenamide, most are due to noticeable competing epoxidation of the respective electron-rich furan. This issue can be circumvented using 6-10 equiv of furan, leading to higher yields (see references 13 and 18). For electron-deficient furans, the competing furan-epoxidation is not a problem, and thus, we can employ a much lower loading. However, we have found that reactions with electron-deficient furans such as those shown in this study are overall slower and more sluggish. This is consistent with the fact that oxyallyl cation based [4+3] cycloadditions proceed in an electrophilic manner.

21

Analytical Data
Compound 4b: R f = 0.10 (50% EtOAc in hexane); [α]D 23
-86.2 (c 0.10, CH2Cl2). 1H NMR (500 MHz, CDCl3): δ = 2.53 (d, 1 H, J = 16.2 Hz), 2.83 (dd, 1 H, J = 5.4, 16.0 Hz), 3.67 (s, 3 H), 3.96 (s, 1 H), 4.18 (t, 1 H, J = 8.1 Hz), 4.66 (t, 1 H, J = 8.0 Hz), 4.82 (t, 1 H, J = 9.2 Hz), 5.06 (dd, 1 H, J = 5.2, 1.6 Hz), 6.28 (dd, 1 H, J = 6.0, 2.0 Hz), 7.15 (d, 1 H, J = 6.4 Hz), 7.28-7.46 (m, 5 H). 13C NMR (75 MHz, CDCl3): δ = 14.5, 21.3, 45.4, 53.1, 64.4, 68.6, 70.6, 79.1, 89.3, 128.4, 129.5, 129.4, 140.2, 167.4, 171.4, 199.4 cm-1. IR (thin film): 3280 (w), 2911 (w), 1766 (s) cm-1. MS (APCI): m/e (%) = 344.1 (90) [M + H]+.
Compound 4b-D: R f = 0.10 (50% EtOAc in hexane); [α]D 23 -132.6 (c 0.30, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ = 2.52 (d, 1 H, J = 16.8 Hz), 2.84 (dd, 1 H, J = 5.2, 16.4 Hz), 3.65 (s, 3 H), 3.96 (s, 0.35 H), 4.20 (dd, 1 H, J = 8.8, 6.8 Hz), 4.74 (t, 1 H, J = 8.4 Hz), 4.96 (t, 1 H, J = 7.6 Hz), 5.05 (m, 1 H) 6.28 (dd, 1 H, J = 1.6, 5.6 Hz), 7.11 (d, 1 H, J = 6.0 Hz), 7.23-7.44 (m, 5 H). 13C NMR (125 MHz, CDCl3): δ = 29.5, 45.4, 53.0, 64.3, 70.5, 79.1, 89.2, 128.4, 129.5, 129.9, 132.6, 133.6, 136.4, 158.3, 167.3, 199.4. IR (thin film): 3300 (w), 2910 (w), 1748 (s) cm-1. MS (APCI): m/e (%) = 345.1 (60) [M + H]+.
Compound 5b: R f = 0.23 (50% EtOAc in hexane); [α]D 23
-72.8 (c 6.4, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ = 2.51 (d, 1 H, J = 16.0 Hz), 2.84 (dd, 1 H, J = 16.4, 6.0 Hz), 4.00 (s, 1 H), 4.17 (t, 1 H, J = 8.8 Hz), 4.39 (ddt, 1 H, J = 13.2, 5.6, 1.3 Hz), 4.66 (t, 1 H J = 8.4 Hz), 4.69 (m, 1 H), 4.83 (t, 1 H, J = 8.4 Hz), 5.07 (dd, 1 H, J = 5.6, 1.9 Hz), 5.27 (ddd, 1 H, J = 10.4, 2.5, 1.3 Hz) 5.34 (ddd, 1 H, J = 17.2, 3.0, 1.4 Hz) 5.84 (ddt, 1 H, J = 6.0, 11.6, 16.4), 6.28 (dd, 1 H, J = 6.0, 2.0 Hz), 6.72 (d, 1 H, 6.0 Hz), 7.28-7.41 (m, 5 H). 13C NMR (125 MHz, CDCl3): δ = 45.4, 64.4, 66.7, 68.6, 70.6, 79.1, 89.3, 119.6, 128.5, 129.5, 129.9, 131.3, 132.8, 133.7, 136.5, 158.2, 166.8, 199.5. IR (thin film): 3629 (w), 3445 (w), 3065 (w), 1764 (s), 1726 (s) cm-1. MS (APCI):
m/e (%) = 370.1 (100) [M + H]+.
Compound 9b: R f = 0.13 (50% EtOAc in hexane); [α]D 23
-78.5 (c 2.0, CH2Cl2). 1H NMR (500 MHz, CDCl3): δ = 2.52 (d, 1 H, J = 16.5 Hz), 2.79 (dd, 1 H, J = 17.0, 5.5 Hz), 3.84 (s, 1 H), 4.26 (dd, 1 H, J = 9.0, 7.0 Hz), 4.77 (t, 1 H, J = 8.5 Hz), 5.08 (d, 1 H, J = 4.0 Hz), 5.16 (t, 1 H, J = 8.0 Hz) 6.34 (br d, 1 H, J = 4.5 Hz), 6.37 (dd, 0.5 H, J = 6.0, 2.0 Hz), 6.61 (d, 0.5 H, J = 6.0 Hz), 7.41-7.48 (m, 5 H). 13C NMR (125 MHz, CDCl3): δ = 29.6, 44.8, 45.3, 65.1, 71.4, 79.3, 79.7, 128.2, 128.8, 129.9, 130.2, 130.6, 132.8, 135.7, 197.2. IR (thin film): 3509 (w), 3110 (w), 2897 (w), 1755 (s), 1729 (s) cm-1. MS (APCI): m/e (%) = 311.1 (10) [M + H]+.
Compounds 10a,b: R f = 0.31 (50% EtOAc in hexane). 1H NMR (400 MHz, CDCl3): δ = 1.31 (s, 3 H), 1.43 (s, 3 H), 2.43 (d, 1 H, J = 16.5 Hz), 2.49 (d, 1 H, J = 15.5 Hz), 2.65 (d, 1 H, J = 15.5 Hz), 2.75-2.82 (br, 1 H), 4.08 (dd, 1 H, J = 8.0, 4.4 Hz), 4.19 (dd, 1 H, J = 8.4, 8.4 Hz), 4.74 (t, 2 H, J = 8.8 Hz), 4.82 (dd, 1 H, J = 9.2, 4.4 Hz), 4.87 (dd, 2 H, J = 8.4, 4.8 Hz), 4.92 (d, 2 H, J = 4.4 Hz), 4.99 (dd, 1 H, J = 5.6, 0.8 Hz), 5.92 (d, 1 H, J = 6.0 Hz), 6.06 (br, 1.8 H), 6.13 (dd, 0.50 H, J = 6.4, 2.0 Hz), 6.45 (d, 0.20 H, J = 5.6 Hz), 6.48 (dd, 0.50 H, J = 4.4, 1.0 Hz), 7.27-7.44 (m, 10 H). IR (thin film): 3425 (w), 2927 (m), 1751 (s), 1719 (s) cm-1. MS (APCI): m/e (%) = 300.1 (100) [M + H]+.

23

When the reaction was carried out in the absence of ZnCl2, it was very sluggish and inconclusive.