Synthesis 2008(5): 693-695  
DOI: 10.1055/s-2008-1032164
SHORTPAPER
© Georg Thieme Verlag Stuttgart · New York

Efficient and Practical Protection of the Catechol Residue of 3,4-Dihydroxyphenylalanine (DOPA) Derivative as Acetonide

Vadim A. Soloshonok*, Hisanori Ueki
Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
e-Mail: vadim@ou.edu;
Further Information

Publication History

Received 27 September 2007
Publication Date:
08 February 2008 (online)

Abstract

The acetonide formation of 3,4-dihydroxyphenylalanine (DOPA) derivative was realized under efficient and practical reaction conditions: the reaction of the methyl ester of DOPA in acetone-i-PrOH in the presence of 5 mol% of TsOH afforded the catechol side chain protected DOPA as an acetonide in quantitative yield; the workup procedure is a simple evaporation of the solvents. This methodology allows an access to the reaction in large scale.

    References

  • 1 For leading references, see the historical review article: Hornykiewicz O. Amino Acids  2002,  23:  65 
  • 2 Structure, Cellular Synthesis and Assembly of Biopolymers   Case ST. Springer-Verlag; Berlin: 1992. 
  • 3a Dalsin JL. Hu B.-H. Lee BP. Messersmith PB. J. Am. Chem. Soc.  2003,  125:  4253 
  • 3b Waite JH. Tanzer ML. Science  1981,  212:  1038 
  • 4 Chen C. Zhu Y.-F. Wilcoxen K. J. Org. Chem.  2000,  65:  2574 
  • 5 Gaucher A. Dutot L. Barbeau O. Hamchaoui W. Wakselman M. Mazaleyrat J.-P. Tetrahedron: Asymmetry  2005,  16:  857 
  • 6 Wells GJ. Tao M. Josef KA. Bihovsky R. J. Med. Chem.  2001,  44:  3488 
  • 7 Paleo MR. Domínguez D. Castedo L. Tetrahedron  1994,  50:  3627 
  • 8 Paleo MR. Domínguez D. Castedo L. Tetrahedron Lett.  1993,  34:  2369 
  • 9 Kolasa T. Miller MJ. J. Org. Chem.  1990,  55:  4246 
  • 10 Burton WH. Budde WL. Cheng CC. J. Med. Chem.  1970,  13:  1009 
  • For alkylations, see:
  • 11a Soloshonok VA. Yamada T. Ueki H. Moore AM. Cook TK. Arbogast KL. Soloshonok AV. Martin CH. Ohfune Y. Tetrahedron  2006,  62:  6412 
  • 11b Soloshonok VA. Ellis TK. Synlett  2006,  533 
  • 11c Soloshonok VA. Ueki H. Ellis TK. Tetrahedron Lett.  2005,  46:  941 
  • 11d Ellis TK. Martin CH. Tsai GM. Ueki H. Soloshonok VA. J. Org. Chem.  2003,  68:  6208 
  • See, for aldol additions:
  • 11e Soloshonok VA. Avilov DV. Kukhar’ VP. Meervelt LV. Mischenko N. Tetrahedron Lett.  1997,  38:  4671 
  • 11f Soloshonok VA. Avilov DV. Kukhar VP. Tararov VI. Saveleva TF. Churkina TD. Ikonnikov NS. Kochetkov KA. Orlova SA. Pysarevsky AP. Struchkov YT. Raevsky NI. Belokon YN. Tetrahedron: Asymmetry  1995,  6:  1741 
  • See, for Michael additions:
  • 11g Yamada T. Okada T. Sakaguchi K. Ohfune Y. Ueki H. Soloshonok VA. Org. Lett.  2006,  8:  5625 
  • 11h Ellis TK. Ueki H. Yamada T. Ohfune Y. Soloshonok VA. J. Org. Chem.  2006,  71:  8572 
  • 11i Soloshonok VA. Cai C. Yamada T. Ueki H. Ohfune Y. Hruby VJ. J. Am. Chem. Soc.  2005,  127:  15296 
  • 11j Soloshonok VA. Gerus II. Yagupolskii YL. Kukhar VP. Zh. Org. Khim.  1987,  23:  2308 ; Chem. Abstr., 1987, 109, 55185
  • 11k Soloshonok VA. Kacharov AD. Hayashi T. Tetrahedron  1996,  52:  245 
  • 12 Sever MJ. Wilker JJ. Tetrahedron  2001,  57:  6139 
  • 13 Hu BH. Messersmith PB. Tetrahedron Lett.  2000,  41:  5795