Aktuelle Rheumatologie 2008; 33(5): 290-299
DOI: 10.1055/s-2008-1027884
Übersichtsarbeit

© Georg Thieme Verlag KG Stuttgart · New York

Einfluss von Bisphosphonaten auf die entzündliche Gelenkdestruktion bei rheumatoider Arthritis und in Arthritismodellen

Influence of Bisphosphonates on Inflammatory Joint Destruction in Rheumatoid Arthritis and in Arthritis ModelsP. Oelzner1 , G. Wolf2 , G. Hein1 , R. Bräuer3
  • 1Selbstständiger Funktionsbereich Rheumatologie und Osteologie, Medizinische Klinik III, Friedrich-Schiller-Universität Jena
  • 2Nephrologie, Medizinische Klinik III, Friedrich-Schiller-Universität Jena
  • 3Immunpathologie, Institut für Pathologie, Friedrich-Schiller-Universität Jena
Further Information

Publication History

Publication Date:
27 October 2008 (online)

Zusammenfassung

Mit zunehmenden Erkenntnissen über die Bedeutung der osteoklastären Knochenresorption, vermittelt über das RANKL-RANK-OPG-System bei postmenopausaler, glukokortikoidinduzierter und entzündungsassoziierter Osteoporose und im Prozess der Destruktion des periartikulären Knochens bei rheumatoider Arthritis (RA) wächst das Interesse an einer Kombination von antiinflammatorischen und antiosteoklastären Therapieprinzipien zur Hemmung der Gelenkdestruktion bei Patienten mit RA. Aufgrund suppressiver Effekte auf die osteoklastäre Knochenresorption sowie zusätzlicher antiinflammatorischer Effekte, wie Hemmung der Sekretion von proinflammatorischen Zytokinen und Matrix-Metalloproteinasen, bieten sich die relativ nebenwirkungsarmen Bisphosphonate als antiosteoklastäres und potenziell antiinflammatorisches adjuvantes Therapieprinzip bei RA an. Bisphosphonate wurden in verschiedenen Arthritismodellen als auch in kleineren Studien bei Patienten mit RA hinsichtlich ihrer Wirksamkeit auf Entzündung, Gelenkdestruktion und periartikuläre Knochenresorption untersucht. Während im Tiermodell übereinstimmend für verschiedene Bisphosphonate eine Hemmung des periartikulären Knochenmasseverlusts bzw. der Knochenresorption nachgewiesen werden konnte, sind die Befunde hinsichtlich der Suppression von Gelenkdestruktion und Entzündung nicht einheitlich. Für neu entwickelte hochpotente Bisphosphonate wie Zoledronat konnte nicht nur im Tiermodell, sondern auch bei RA-Patienten ein hemmender Effekt auf die Knochenerosion gezeigt werden. Die Beurteilung der in Tiermodellen gewonnenen Ergebnisse wird dadurch erschwert, dass verschiedene Substanzen in Arthritis-Modellen mit unterschiedlicher Pathogenese in differenten Dosierungen zum Einsatz kamen. Außerdem wurden Bisphosphonat-Effekte auf Knochen, Entzündung und Gelenkdestruktion mit unterschiedlichen Methoden und Methodenkombinationen untersucht. Sowohl tierexperimentelle Daten als auch Untersuchungen bei RA-Patienten weisen darauf hin, dass für die Hemmung von Gelenkdestruktion und Entzündung wesentlich höhere Dosierungen erforderlich sind als für die Hemmung der osteoklastären Knochenresorption. Unklar ist, inwieweit die zur Hemmung der Entzündung erforderlichen Dosierungen eine Übersuppression des Knochenumbaus bedingen. Die vorliegende Übersicht gibt einen Überblick über die in Tiermodellen und bei RA gewonnen Erkenntnisse über Bisphosphonat-Effekte auf Entzündung und die arthritisassoziierte Knochendestruktion.

Abstract

In context with the increasing evidence for the significance of osteoclastic bone resorption mediated by the RANKL-RANK-OPG system in the pathogenesis of postmenopausal, glucocorticoid-induced and inflammation-associated osteoporosis as well as in joint destruction in rheumatoid arthritis (RA), there is an increasing interest in the combination of anti-inflammatory and anti-osteoclastic therapies in RA. Because of their suppressive effects on both osteoclastic bone resorption and inflammation due to inhibitory effects on the secretion of pro-inflammatory cytokines and matrix metalloproteinases, bisphosphonates are implicated to be a useful adjuvant therapy in RA. Furthermore, these substances are relatively cheap and have only few side effects. The effects of various bisphosphonates on inflammation, joint destruction and periarticular bone resorption were investigated in different animal models of RA and also in some small studies in RA patients. In various animal models, a suppressive effect of different non-amino- and aminobisphosphonates on periarticular bone resorption was found. But the results with respect to the inhibition of joint and cartilage destruction and inflammation are inconsistent. Newly developed, highly potent aminobisphosphonates such as zoledronate have been shown to inhibit articular bone erosion not only in animal models but also in RA. The assessment of data from animal models is difficult because various bisphosphonates were administered in different doses in heterogeneous animal models with a partly different pathogenesis. Furthermore, the effects of bisphophonates on bone and joint destruction were investigated using different methods or combinations of these methods. Data from animal models and from RA patients have shown that the doses of bisphosphonates necessary for the suppression of inflammation and joint destruction are significantly higher than those needed for the inhibition of osteoclastic bone resorption. It is not clear whether or not these relatively high bisphosphonate doses may result in an oversuppression of bone turnover. The effects of various bisphosphonates on joint destruction and inflammation in RA and animal models of RA are reviewed systematically and discussed in this contribution.

Literatur

  • 1 Abe Y, Kawakami A, Nakashima T. et al . Etidronate inhibits human osteoblast apoptosis by inhibition of pro-apoptotic factor(s) produced by activated T cells.  J Lab Clin Med. 2000;  136 344-354
  • 2 Akiyama T, Mori S, Mashiba T. et al . Incadronate disodium inhibits joint destruction and periarticular bone loss only in the early phase of rat adjuvant-induced arthritis.  J Bone Miner Metab. 2005;  23 295-301
  • 3 Barrera P, Blom A, Lent P LEM. et al . Synovial macrophage depletion with clodronate-containing liposomes in rheumatoid arthritis.  Arthritis Rheum. 2000;  43 1951-1959
  • 4 Bell N H, Johnson R H. Bisphosphonates in the treatment of osteoporosis.  Endocrine. 1997;  6 203-206
  • 5 Bellingham C M, Lee J M, Moran E L. et al . Bisphosphonate (pamidronate/APD) prevents arthritis-induced loss of fracture toughness in the rabbit femoral diaphysis.  J Orthop Res. 1995;  13 876-880
  • 6 Bogoch E R, Lee T C, Fornasier V L. et al . Articular damage is associated with intraosseous inflammation in the subchondral bone marrow of joints affected by experimental inflammatory arthritis and is modified by zoledronate treatment.  J Rheumatol. 2007;  34 1229-1240
  • 7 Breuil van V, Euller-Ziegler L. Bisphosphonate therapy in rheumatoid arthritis.  Joint Bone Spine. 2006;  73 349-354
  • 8 Carvalho A P, Bezerra M M, Girão V C. et al . Anti-inflammatory and anti-nociceptive activity of risedronate in experimental pain models in rats and mice.  Clin Exp Pharmacol Physiol. 2006;  33 601-606
  • 9 Cantatore F P, Ingrosso A M, Carozzo M. Effects of bisphosphonates on interleukin-1, tumor necrosis factor &alpha and ß2 microglobulin in rheumatoid arthritis.  J Rheumatol. 1993;  23 1117-1118
  • 10 Cantatore F P, Acquista C A, Pipitone V. Evaluation of bone turnover and osteoclastic cytokines in early rheumatoid arthritis treated with alendronate.  J Rheumatol. 1999;  26 2318-2323
  • 11 Cohen S B, Dore R K, Lane N E. et al . Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: A twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial.  Arthritis Rheum. 2008;  58 1299-1309
  • 12 Corrado A, Santoro N, Cantatore F P. Extra-skeletal effects of bisphosphonates.  Joint Bone Spine. 2007;  74 32-38
  • 13 Diarra D, Stolina M, Polzer K. et al . Dickkopf-1 is a master regulator of joint remodeling.  Nature Medicine. 2007;  13 156-163
  • 14 Dombrecht E J, De Tollenaere C B, Aerts K. et al . Antioxidant effect of bisphosphonates and simvastatin on chondrocyte lipid peroxidation.  Biochem Biophys Res Commun. 2006;  348 459-464
  • 15 Eggelmeijer F, Papapoulos S E, Paassen H C. et al . Clinical and biochemical response to single infusion of pamidronate in patients with active rheumatoid arthritis: a double blind placebo controlled study.  J Rheumatol. 1994;  21 2016-20
  • 16 Elomaa van I, Risteli L, Laakso M. et al . Monitoring the action of clodronate with type I collagen metabolites in multiple myeloma.  Eur J Cancer. 1996;  32 1166-1170
  • 17 Evans C E. Bisphosphonates modulate the effect of macrophage-like cells on osteoblast.  Int J Biochem Cell Biol. 2002;  34 554-563
  • 18 Ferraccioli G F, Salaffi F, Carotti M. et al .Cl2 MDP improves rheumatoid inflammation. 5th INWIN, Interscience World Conference of Inflammation, Antirheumatics, Analgetics, Immunomodulators, Geneva Switzerland; 25 – 28 april 1993 abstract 208
  • 19 Goldring S R, Gravallese E M. Bisphosphonates: Environmental protection for the joint.  Arthritis Rheum. 2004;  50 2044-2047
  • 20 Gough A K, Lilley J, Eyre S. et al . Generalised bone loss in patients with early rheumatoid arthritis.  Lancet. 1994;  344 23-27
  • 21 Gravallese E M, Manning C, Tsay A. et al . Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor.  Arthritis Rheum. 2000;  43 250-258
  • 22 Hamma-Koutbali Y, Di Benedetto M, Ledoux D. et al . A novel non-containing-nitrogen bisphosphonate inhibits both in vitro and in vivo angiogenesis.  Biochem Biophys Res Comm. 2003;  24 816-823
  • 23 Harada H, Nakayama T, Nanaka T. et al . Effects of bisphosphonates on joint damage and bone loss in rat adjuvant-induced arthritis.  Inflamm Res. 2004;  53 45-52
  • 24 Hasegawa J, Nagashima M, Yamamoto M. et al . Bone resorption and inflammatory inhibition efficacy of intermittent cyclical etidronate therapy in rheumatoid arthritis.  J Rheumatol. 2003;  30 474-479
  • 25 Herrak P, Gortz B, Hayer S. et al . Zoledronic acid protects against local and systemic bone loss in tumor necrosis factor-mediated arthritis.  Arthritis Rheum. 2004;  50 2327-2337
  • 26 Hewitt R E, Lissina A, Green A E. et al . The bisphosphonate acute phase response: rapid and copious production of proinflammatory cytokines by peripheral blood gamma-delta T cells in response to aminobisphosphonates is inhibited by statins.  Clin Exp Immunol. 2005;  139 101-111
  • 27 Itoh F, Aoyagi S, Kusama H. et al . Effects of clodronate and alendronate on local and systemic changes in bone metabolism in rats with adjuvant arthritis.  Inflammation. 2004;  28 15-21
  • 28 Jarrett S J, Conaghan P G, Sloan V S. et al . Preliminary evidence for a structural benefit of the new bisphosphonate zoledronic acid in early rheumatoid arthritis.  Arthritis Rheum. 2006;  54 1410-1414
  • 29 Kinne R W, Schmidt-Weber C B, Hoppe R. et al . Long-term amelioration of rat adjuvant arthritis following systemic elimination of macrophages by clodronate-containing liposomes.  Arthritis Rheum. 1995;  38 1777-1790
  • 30 Kinne R W, Schmidt C B, Buchner E. et al . Treatment of rat arthritides with clodronate-containing liposomes.  Scand J Rheumatol. 1995;  101 (Suppl) 91-97
  • 31 Kong Y Y, Feige U, Sarosi I. et al . Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand.  Nature. 1999;  402 304-309
  • 32 Lodder M C, Pelt P A, Lems W F. et al . Effects of high dose IV pamidronate on disease activity and bone metabolism in patients with active RA: a randomized, double-blind placebo-controlled trial.  J Rheumatol. 2003;  30 2080-2081
  • 33 Maccagno van A, Di Giorgio E, Roldan E JA. et al . Double blind radiological assessment of continuous oral pamidronic acid in patients with rheumatoid arthritis.  J Rheumatol. 1994;  23 211-214
  • 34 Masuda-Aiba S, Shinozaki T, Takagishi K. Effects of YM 529, a novel minodronic acid, on adjuvant arthritis in rats.  Clin Exp Rheumatol. 2004;  22 71-78
  • 35 Matsuo A, Shuto T, Hirata G. et al . Antiinflammatory and chondroprotective effects of the aminobisphosphonate incadronate (YM175) in adjuvant induced arthritis.  J Rheumatol. 2003;  30 1280-1290
  • 36 Mazzantini M, Di Munno O, Metelli M R. et al . Single infusion of neridronate (6-amino-1-hydroxyhexylidene-1,1-bisphosphonate) in patients with active rheumatoid arthritis: effects on disease activity and bone resorption markers.  Aging Clin Exp Res. 2002;  14 197-201
  • 37 Mönkkönen J, Taskinen M, Auriola S OK. et al . Growth inhibition of macrophage-like and other cell types by liposome-encapsulated, calcium-bound and free bisphosphonates in vitro.  J Drug Targeting. 1994;  2 299-308
  • 38 Mönkkönen J, Simila J, Rogers M J. Effects of tiludronate and ibandronate on the secretion of proinflammatory cytokines and nitric oxide from macrophages in vitro.  Life Sci. 1998;  62 PL95-PL102
  • 39 Moran E L, Fornasier T L, Bogoch T R. Pamidronate prevents bone loss associated with carrageenan arthritis by reducing resorptive activity but not recruitment of osteoclasts.  J Orthop Res. 2000;  18 873-881
  • 40 Morishita M, Nagashima M, Wauke K. et al . Osteoclast inhibitory effects of vitamin K 2 alone or in combination with etidronate or risedronate in patients with rheumatoid arthritis: 2-year results.  J Rheumatol. 2008;  35 407-413
  • 41 Neumann T, Oelzner P, Petrow P K. et al . Osteoprotegerin reduces the loss of periarticular bone mass in primary and secondary spongiosa but does not influence inflammation in rat antigen-induced arthritis.  Inflamm Res. 2006;  55 32-39
  • 42 Oelzner P, Brauer R, Henzgen S. et al . Periarticular bone alterations in chronic antigen-induced arthritis: free and liposome-encapsulated clodronate prevent loss of bone mass in the secondary spongiosa.  Clin Immunol. 1999;  90 79-88
  • 43 Oelzner P, Kunze A, Henzgen S. et al . High-dose clodronate therapy prevents joint destruction in chronic antigen-induced arthritis of the rat but inhibits bone formation at the axial skeleton.  Inflamm Res. 2000;  49 424-433
  • 44 Österman T, Kippo K, Lauren L. et al . Effect of clodronate on established adjuvant arthritis.  Rheumatol Int. 1994;  14 139-147
  • 45 Österman T, Kippo K, Lauren L. et al . A comparison of clodronate and indomethacin in the treatment of adjuvant arthritis.  Inflamm Res. 1997;  46 79-85
  • 46 Österman T, Virtamo T, Lauren L. et al . Slow-release clodronate in prevention of inflammation and bone loss associated with adjuvant arthritis.  J Pharmacol Exp Ther. 1997;  280 1001-1007
  • 47 Österman T, Kippo K, Lauren L. et al . Effect of clodronate on established collagen-induced arthritis in rat.  Inflamm Res. 1995;  44 258-263
  • 48 Podworny N V, Kandel R A, Renlund R C. et al . Partial chondroprotective effect of zoledronate in a rabbit model of inflammatory arthritis.  J Rheumatol. 1999;  26 1972-1982
  • 49 Pysklywec M W, Moran E L, Bogoch E R. Zoledronate (CGP 42’446), a bisphosphonate, protects against metaphyseal intracortical defects in experimental inflammatory arthritis.  J Orthop Res. 1997;  15 858-861
  • 50 Ralston S H, Hacking L, Willocks L. et al . Clinical, biochemical, and radiographic effects of aminohydroxypropylidene bisphosphonate treatment in rheumatoid arthritis.  Ann Rheum Dis. 1989;  48 396-399
  • 51 Redlich K, Hayer S, Maier A. et al . Tumor necrosis factor alpha-mediated joint destruction is inhibited by targeting osteoclasts with osteoprotegerin.  Arthritis Rheum. 2002;  46 785-792
  • 52 Schett G, Redlich K, Hayer S. et al . Osteoprotegerin protects against generalized bone loss in tumor necrosis factor-transgenic mice.  Arthritis Rheum. 2003;  48 2042-2051
  • 53 Schmidt-Weber C B, Rittig M, Buchner E. et al . Apoptotic cell death in activated monocytes following incorporation of clodronate-liposomes.  J Leukoc Biol. 1996;  60 230-244
  • 54 Sims N A, Green J R, Glatt M. et al . Targeting osteoclasts with zoledronic acid prevents bone destruction in collagen-induced arthritis.  Arthritis Rheum. 2004;  50 2338-2346
  • 55 Tanishima S, Kishimoto Y, Fukata S. et al . Minodronic acid influences receptor activator of nuclear factor kappaB ligand expression and suppresses bone resorption by osteoclasts in rats with collagen-induced arthritis.  Mod Rheumatol. 2007;  7 198-205
  • 56 Takayanagi H, Iizuka H, Juji T. et al . Involvement of receptor activator of nuclear factor kappaB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis.  Arthritis Rheum. 2000;  43 259-269
  • 57 Teronen O, Konttinen Y T, Lindqvist C. et al . Inhibition of matrix metalloproteinase-1 by dichlormethylene bisphosphonate (clodronate).  Calcif Tissue Int. 1997;  61 59-61
  • 58 Teronen O, Konttinen Y T, Lindqvist C. et al . Human neutrophil collagenase MMP-8 in peri-implant sulcus fluid and its inhibition by clodronate.  J Dent Res. 1997;  76 1529-1537
  • 59 Valleala H, Laitinen K, Pylkkanen L. et al . Clinical and biochemical response to single infusion of clodronate in active rheumatoid arthritis – a double blind placebo controlled study.  Inflamm Res. 2001;  50 598-601
  • 60 Valleala H, Laasonen L, Koivula M K. et al . Two year randomized controlled trial of etidronate in rheumatoid arthritis: changes in serum aminoterminal telopeptides correlate with radiographic progression of disease.  J Rheumatol. 2003;  30 468-473
  • 61 Van Lent P L, Holthuysen A E, Putte L B. et al . Role of macrophage-like synovial lining cells in localisation and expression of inflammation in type II collagen-induced arthritis.  Scand J Rheumatol. 1995;  101 (Suppl) 83-89
  • 62 Van Offel J F, Schuerwegh A J, Bridts C H. et al . Influence of cyclic intravenous pamidronate on proinflammatory monocytic cytokine profiles and bone density in rheumatoid arthritis treated with low dose prednisolone and methotrexate.  Clin Exp Rheumatol. 2001;  19 13-20
  • 63 Van Offel J F, Schuerwegh A J, Bridts C H. et al . Effect of bisphosphonates on viability, proliferation, and dexamethasone-induced apoptosis of articular chondrocytes.  Ann Rheum Dis. 2002;  61 925-928
  • 64 Verdrengh van de M, Carlsten H, Ohlsson C. et al . Addition of bisphosphonate to antibiotic and anti-inflammatory treatment reduces bone resorption in experimental Staphylococcus aureus-induced arthritis.  J Orthop Res. 2006;  35 304-310
  • 65 Yamamoto K, Yoshino S, Shue G. et al . Inhibitory effect of bone resorption and inflammation with etidronate therapy in patients with rheumatoid arthritis for 3 years and in vitro assay in arthritis models.  Rheumatol Int. 2006;  26 627-632
  • 66 Yamane I, Hagino H, Okano T. et al . Effect of minodronic acid (ONO-5920) on bone mineral density and arthritis in adult rats with collagen-induced arthritis.  Arthritis Rheum. 2003;  48 1732-1741
  • 67 Zhang Q, Badell I R, Schwarz E M. et al . Tumor necrosis factor prevents alendronate-induced osteoclast apoptosis in vivo by stimulating Bcl-xL expression through Ets-2.  Arthritis Rheum. 2005;  52 2708-2718
  • 68 Zhao H, Shuto T, Hirata G. et al . Aminobisphosphonate (YM175) inhibits bone destruction in rat adjuvant arthritis.  J Orthop Sci. 2000;  5 397-403
  • 69 Zhao H, Liu S, Huang D. et al . The protective effects of incadronate on inflammation and joint destruction in established rat adjuvant arthritis.  Rheumatol Int. 2006;  26 732-740
  • 70 Zysk S P, Durr H R, Gebhard H H. et al . Effects of ibandronate on inflammation in mouse antigen-induced arthritis.  Inflamm Res. 2003;  52 221-226

PD Peter Oelzner

Selbständiger Funktionsbereich Rheumatologie und Osteologie, Medizinische Klinik III, Friedrich-Schiller-Universität Jena

Erlanger Allee 101

07740 Jena

Phone: ++ 49/36 41/9 32 43 26

Fax: ++ 49/36 41/9 32 68 42

Email: Peter.Oelzner@med.uni-jena.de

    >