Abstract
We tested the capacity of Galphimia glauca cells to produce galphimine-B (G-B) when under the effects of a two-stage culture system: cell immobilization in Ca2+-alginate beads and culture scale-up from shake-flask to two different types of bioreactor (stirred and airlift). In the shake-flask culture, using optimum media for cell growth (first stage) and G-B production (second stage), the G-B yield was similar in both immobilised and free cells. However, while the free cells accumulated G-B within cytoplasmatic compartments, where it could not be recovered without cell disruption, immobilized cells excreted up to 100 % of the G-B produced. Immobilized cells grown in bioreactors running for 14 days with growth medium and an additional 26 days with production medium in batch mode showed a high G-B yield. The stirred bioreactor was the most efficient with a G-B content in the culture medium of 1381 μg.L-1 at day 24 of culture.
Key words
alginate - anxiolytic activity - excretion - immobilization -
Galphimia glauca
- galphimine-B - Malpighiaceae - stirred bioreactor
References
-
1
Tortoriello J, Lozoya X.
Effect of Galphimia glauca methanolic extract on neuropharmacological test.
Planta Med.
1992;
58
234-6
-
2
Tortoriello J, Ortega A.
Sedative effects of Galphimine-B a nor seco triterpenoide from Galphimia glauca.
Planta Med.
1993;
59
398-400
-
3
González-Cortazar M, Tortoriello J, Álvarez L.
Norsecofriedelanes as spasmolitics advances of structure-activity relationships.
Planta Med.
2005;
71
1-6
-
4
Herrera-Ruiz M, Jiménez-Ferrer J E, De Lima T CM, Avilés-Montes D, Pérez-García D, González-Cortazar M. et al .
Anxiolytic and antidepressant-like activity of a standardized extract from Galphimia glauca.
Phytomedicine.
2006;
13
23-8
-
5
Nader B L, Cardoso Taketa A T, Pereda-Miranda R, Villareal M L.
Production of triterpenoids in liquid-cultivated hairy roots of Galphimia glauca.
Planta Med.
2006;
72
842-4
-
6
Rojas G, Aranda E, Navarro V, Zamilpa A, Tortoriello J.
In vitro propagation of Galphimia glauca and content of the sedative compound galphimine-B in wild and micropropagated plants.
Planta Med.
2005;
71
1076-8
-
7
Brodelius P.
The potential role of immobilization in plant cell biotechnology.
Trends Biotechnol.
1985;
3
280-5
-
8
Dörnenburg H, Knorr D.
Strategies for the improvement of secondary metabolite production in plant cell cultures.
Enzyme Microb Technol.
1995;
17
674-84
-
9
Seki M, Ohzora C h, Takeda M, Furusaki S h.
Taxol (Paclitaxel) production using free and immobilized cells of Taxus cuspidata.
Biotech Bioeng.
1997;
53
214-9
-
10
Bentebibel S, Moyano E, Palazón J, Cusidó R M, Bonfill M, Eibl R. et al .
Effects of immobilization by entrapment in alginate and scale-up on paclitaxel and baccatin III production in cell suspension cultures of Taxus baccata.
Biotechnol Bioeng.
2005;
89
647-54
-
11
Osuna L, Pereda-Miranda R, Villarreal M L.
In vitro production of sedative galphimine-B by cell suspension cultures of Galphimia glauca.
Biotech Lett.
2002;
24
257-61
-
12
Osuna L, Pereda-Miranda R, Tortoriello J, Villareal M L.
Production of the sedative tripertene galphimine B in Galphimia glauca tissue culture.
Planta Med.
1999;
65
149-52
-
13
Murashige T, Skoog F.
A revised medium for rapid growth and biossays with tobacco tissue cultures.
Physiol Plant.
1962;
15
473-97
-
14
Guillet F, Roisin C, Fliniaux M A, Jacquin-Dubreuil A, Barbotin J N, Nava-Saucedo J E.
Immobilization of Nicotiana tabacum plant cell suspensions within calcium alginate gel beads for the production of enhanced amounts of scopolin.
Enzyme Microb Technol.
2000;
26
229-34
-
15 Duncan D R, Widholm J M. Measurements of viability suitable for plant tissue cultures. In: Methods in molecular biology, Vol. 6. Pollard JW, Walker JM, editors New Jersey; The Humana Press 1990: 29-37
-
16
Aguilar-Santamaría L, Ramírez G, Herrera-Arellano A, Zamilpa A, Jiménez J E, Alonso-Cortés D. et al .
Toxicological and cytotoxic evaluation of standarized extracts of Galphimia glauca.
.
J Ethnopharmacol.
2007;
109
35-40
-
17 Hall R D, Holden M A, Yeoman M M. Immobilization of higher plant cells. In: Biotechnology in agriculture and forestry, Vol. 4. Bajaj YPS, editor Berlin; Springer Verlag 1988: 136-56
-
18
Premjet D, Tachibana S.
Production of podophyllotoxin by immobilized cell cultures of Juniperus chinensis.
Pakistan J Biol Sci.
2004;
7
1130-4
-
19
Komaraiah P, Ramakrishna S V, Reddanna P, Kavi-Kishor P B.
Enhanced production of plumbagin in immobilized cells of Plumbago rosea by elicitation and in situ adsorption.
J Biotechnol.
2003;
101
181-7
-
20
Charlet S, Gillet F, Villarreal M L, Barbotin J N, Fliniaux M A, Nava-Saucedo E.
Immobilization of Solanum chrysotrichum plant cells within Ca-alginate gel beads to produce an antimycotic spirostanol saponin.
Plant Physiol Biochem.
2000;
38
875-80
-
21
Rech S B, Batista C VF, Schripsema J, Verpoorte R, Henriques A T.
Cell cultures of Rauwolfia sellowii: growth and alkaloid production.
Plant Cell Tissue Organ Cult.
1998;
54
61-3
-
22
Mori T, Sakurai M, Sakuta M.
Changes in PAL, CHS, DAHP synthase (DS-Co and Ds-Mn) activity during anthocyanin synthesis in suspension cultures of Fragaria ananassa.
Plant Cell Tissue Organ Cult.
2000;
62
135-9
-
23
Villarreal M L, Rojas J, Quintero R, Miranda E, Enriquez R, Leon I. et al .
In vitro cultures of Montanoa tomentosa for the production of diterpenic acids.
Biotechnol Lett.
2001;
21
1279-84
-
24
Taticek R A, Murray M Y, Raymond L L.
The scale-up of plant cell culture: engineering considerations.
Plant Cell Tissue Organ Cult.
1991;
24
139-58
-
25
Lee-Parsons C WT, Ertürk S.
Ajmalicine production in methyl jasmonate-induced Catharanthus roseus cell cultures depends on Ca2+ level.
Plant Cell Rep.
2005;
24
677-82
Prof. Dr. Lidia T Osuna Torres
Centro de Investigación Biomédica del Sur
Instituto Mexicano del Seguro Social (CIBIS-IMSS)
Argentina 1
CP 62790 Xochitepec
Morelos
México
Phone: +52-777-36-12155
Email: osunalidia@yahoo.com