Subscribe to RSS
DOI: 10.1055/s-2007-993158
© Georg Thieme Verlag KG Stuttgart · New York
Evaluation of Motexafin Gadolinium (MGd) as a Contrast Agent for Intraoperative MRI
Publication History
Publication Date:
22 January 2008 (online)
Abstract
Objective: The characteristics of an ideal contrast agent for use in the intraoperative MRI would be tumor-specificity and intracellular localization, combined with extended tumor enhancement, but with rapid elimination from the blood. The radiation sensitizing properties of Motexafin gadolinium (MGd) have been investigated in a number of clinical trials involving patients with brain metastases. These studies clearly show that MGd is detectable in magnetic resonance images many days following administration. The aim of this experimental study was to test whether Motexafin gadolinium (MGd) could serve as an efficient intraoperative contrast agent avoiding problems that arise with surgically induced intracranial enhancement.
Methods: F98 orthotopic brain tumors or surgical lesions were induced in Fisher rats. T1-weighted MRI studies were performed with either a single or multiple daily doses of MGd. The last contrast dose was administered either 7 or 24 hours prior to scanning in both tumor-bearing or surgically-treated animals. All scans were T1-weighted nce (TR=495 ms; TE=1 ms.) with a slice thickness of 1.0 mm. Three tubes containing 2.3, 0.23 and 0.023 mg/mL of MGd (in physiological saline) respectively, were used as standards to calibrate the scans.
Results: Animals receiving either 30 or 60 mg/kg MGd i.v. developed clinical signs of impaired motor activity, and increasing lethargy and were euthanized 48 hours after MGd administration due to their poor and deteriorating condition. MGd given i.p. was tolerated up to a dose of 140 mg/kg. Despite multiple dosages and several administration modes (i.p., i.v.) no significant enhancement was observed if the scans were performed 7 or 24 hours following the last MGd dose. Clear enhancement was seen though when the scans were performed 30 min following MGd administration, indicating that the agent was being taken up by the tumor. Scans of necrotic lesions though were positive though 7 hours following MGd injection. MGd scans had no significant enhancement following surgically-induced lesions while scans with conventional contrast agents showed both meningeal and intraparenchymal enhancement.
Conclusion: This study suggests that MGd is not sequestered in viable tumor for the necessary time interval required to allow delayed imaging in this model. The agent does seem to remain in necrotic tissue for longer time intervals. MGd therefore would not be suitable as a contrast agent in intraoperative MRI for the detection of remaining tumor tissue during surgery.
Key words
motexafin - intraoperative MRI - surgically-induced contrast - rat brain tumor
References
- 1 Albert FK, Forsting M, Sartor K. et al . Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery. 1994; 34 45-61
- 2 Yoshida J, Kajita Y, Wakabayashi T. et al . Long-term follow-up results of 175 patients with malignant glioma: importance of radical tumour resection and postoperative adjuvant therapy with interferon, ACNU and radiation. Acta Neurochir. 1994; 127 55-59
- 3 Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, De Monte F, Lang FF, MacCutcheon IE, Hassenbusch SJ, Holland E, Hess K, Michael C, Miller D, Sawaya R. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg. 2001; 95 190-198
- 4 Stummer W, Pichlmeier U, Meinel T, Wiestler O, Zanella F, Reulen H. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 2006; 7 392-401
- 5 Hirschberg H, Samset E, Hole PK, Lote K. Impact of intraoperative MRI on the results of surgery for high grade gliomas. Minim Invas Neurosurg. 2005; 48 77-84
- 6 Wirtz CR, Knauth M, Staubert A, Bonsanto MM, Sartor K, Kunze S, Tronnier VM. Clinical evaluation and follow-up results for intraoperative magnetic resonance imaging in neurosurgery. Neurosurgery. 2000; 46 1112-1120
- 7 Lunsford LD, Kondziolka D, Bissonette DJ. Intraoperative imaging of the brain. Stereotact Funct Neurosurg. 1996; 66 58-64
- 8 Hammoud MA, Ligon BL, el Souki R. et al . Use of intraoperative ultrasound for localizing tumors and determining the extent of resection. A comparative study with magnetic resonance imaging. J Neurosurg. 1996; 84 737-774
- 9 Hirschberg H, Unsgaard G. Incorporation of ultrasonic imaging in an optically coupled frameless stereotatic system. Acta Neurochirurgica. 1997; 68 75-80
- 10 Gronningsaeter A, Kleven A, Ommedal S, Aarseth TE, Lie T, Lindseth F, Lango T, Unsgard G. SonoWand, an ultrasound-based neuronavigation system. Neurosurgery. 2000; 47 1373-1379
- 11 Hirschberg H, Samset E. Intraoperative image directed dye marking of tumor margins. Minim Invas Neurosurg. 1999; 42 123-127
- 12 Dietrich J, Schneider JP, Schulz T. et al . Intraoperative appearance of the resection area in brain-tumor operations in an open 0.5 MRT. Radiologe. 1998; 38 935-942
- 13 Knauth M, Aras N, Wirtz CR. et al . Surgically induced intracranial contrast enhancement. Potential source of error in intraoperative MRI. AJNR Am J Neuroradiol. 1999; 20 1547-1553
- 14 Knauth M, Egelhof T, Roth SU, Wirtz CR, Sartor K. Monocrystalline iron oxide nanoparticles: possible solution to the problem of surgically induced intracranial contrast enhancement in intraoperative MR imaging. AJNR Am J Neuroradiol. 2001; 22 99-102
- 15 Varallyay P, Nesbit G, Muldoon LL, Nixon RR, Delashaw J, Cohen JI, Petrillo A, Rink D, Neuwelt EA. Comparison of two superparamagnetic viral-sized iron oxide particles ferumoxides and ferumoxtran-10 with a gadolinium chelate in imaging intracranial tumors. AJNR Am J Neuroradiol. 2002; 23 510-519
- 16 Kircher MF, Mahmood U, King RS, Weissleder R, Josephson L. A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Research. 2003; 63 8122-8125
- 17 Sessler JL, Murai T, Hemmi G. A water-stable gadolinium(III) complex derived from a new pentadentate expanded porphyrin ligand. Inorg Chem. 1989; 28 3390-3393
- 18 Sessler JL, Burrell AK. Expanded porphyrins. Top Curr Chem. 1992; 161 177-273
- 19 Young SW, Qing F, Harriman A. et al . Gadolinium(III) texaphyrin: a tumor selective radiation sensitizer that is detectable by MRI. Proc Natl Acad Sci USA. 1996; 93 6610-6615
- 20 Sessler JL, Mody TD, Hemmi GW. et al . Gadolinium(III) texaphyrin: a novel MRI contrast agent. J Am Chem Soc. 1993; 115 10368-10369
- 21 Young SW, Sidhu MK, Qing F. et al . Preclinical evaluation of gadolinium(III) texaphyrin complex. Inv Radiol. 1994; 29 330-338
- 22 Wu GN, Ford JM, Alger JR. MRI measurement of the uptake and retention of motexafin gadolinium in glioblastoma multiforme and uninvolved normal human brain. J Neuro-Oncol. 2006; 77 95-103
- 23 Carde P, Timmerman R, Mehta MP. et al . Multicenter phase Ib/II trial of the radiation enhancer motexafin gadolinium in patients with brain metastases. J Clin Oncol. 2001; 19 2074-2083
- 24 De Stasio G, Rajesh D, Ford JM. et al . Motexafin-gadolinium taken up in vitro by at least 90% of glioblastoma cell nuclei. Clin Cancer Res. 2006; 12 206-213
- 25 Ko L, Koestner A, Wechsler W. Characterization of cell cycle and biological parameters of transplantable glioma cell lines and clones. Acta Neuropathol. 1980; 51 107
- 26 Goodman JH, MacGregor JM, Clendenon NR, Gahbauer RA, Barth RF, Soloway AH, Fairchild RG. Inhibition of tumor growth in a glioma model treated with boron neutron capture therapy. Neurosurgery. 1990; 27 383
- 27 Angell-Petersen E, Madsen SJ, Spetalen S, Sun CH, Peng Q, Carper SW, Hirschberg H. Influence of light fluence rate on the effects of photodynamic therapy in an orthotopic rat glioma model. J Neurosurg. 2006; 104 109-117
- 28 Hunt MA, Bago AG, Neuwelt EA. Single-dose contrast agent for intraoperative MR imaging of intrinsic brain tumors by using ferumoxtran-10 AJNR. Am J Neuroradiol. 2005; 26 1084-1088
- 29 Veiseh O, Sun C, Gunn J, Kohler N, Gabikian P, Lee D, Bhattarai N, Ellenbogen R, Sze R, Hallahan A, Olson J, Zhang M. Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett. 2005; 5 1003-1008
- 30 Lyons SA, O’Neal J, Sontheimer H. Chlorotoxin, a scorpion-derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin. Glia. 2002; 39 162-173
- 31 Tréhin R, Figueiredo J-L, Pittet 2 MJ, Weissleder R, Josephson L, Mahmood U. Fluorescent nanoparticle uptake for brain tumor visualization. Neoplasia. 2006; 8 302-311
- 32 Woodburn KW. Intracellular localization of the radiation enhancer motexafin gadolinium using interferometric Fourier fluorescence microscopy. J Pharmacol Exp Ther. 2001; 297 888-894
- 33 Viala J, Vanel D, Meingan P. et al . Phases IB and II multidose trial of gadolinium texaphyrin, a radiation sensitizer detectable at MR imaging: preliminary results in brain metastases. Radiology. 1999; 212 755-759
- 34 Mehta MP, Shapiro WR, Glantz MJ. et al . Lead-in phase to randomized trial of motexafin gadolinium and whole-brain radiation for patients with brain metastases: centralized assessment of magnetic resonance imaging, neurocognitive, and neurologic end points. J Clin Oncol. 2002; 20 3445-3453
- 35 Mehta MP, Rodrigus P, Terhaard CH. et al . Survival and neurologic outcomes in a randomized trial of motexafin gadolinium and whole-brain radiation therapy in brain metastases. J Clin Oncol. 2003; 21 2529-2536
- 36 Meyers CA, Smith JA, Bezjak A. et al . Neurocognitive function and progression in patients with brain metastases treated with whole-brain radiation and motexafin gadolinium: results of a randomized phase III trial. J Clin Oncol. 2004; 22 157-165
- 37 Rosenthal DI, Nurenberg P, Becerra CR. et al . A Phase I single dose trial of gadolinium texaphyrin (Gd-Tex), a tumor selective radiation sensitizer detectable by magnetic resonance imaging. Clin Cancer Res. 1999; 5 739-745
- 38 Miller RA, Woodburn K, Fan Q, Renschler MF, Sessler JL, Koutcher JA. In vivo animal studies with gadolinium(III) texaphyrin as a radiation enhancer. Int. J Radiation Oncology Biol Phys. 1999; 45 981-989
Correspondence
H. HirschbergMD, PhD
Beckman Laser Institute
1002 Health Sciences Rd
Irvine
CA 92612
USA
Phone: +1/949/824 12 48
Email: hirschberg@laser.bli.uci.edu