Subscribe to RSS
DOI: 10.1055/s-2007-990812
Reaction of Dicarbonates with Carboxylic Acids Catalyzed by Weak Lewis Acids: General Method for the Synthesis of Anhydrides and Esters
Publication History
Publication Date:
25 September 2007 (online)
Abstract
The reaction between carboxylic acids (RCOOH) and dialkyl dicarbonates [(R1OCO)2O], in the presence of a weak Lewis acid such as magnesium chloride and the corresponding alcohol (R1OH) as the solvent, leads to the esters RCOOR1 in excellent yields. The mechanism involves a double addition of the acid to the dicarbonate, affording a carboxylic anhydride [(RCO)2O], R1OH and carbon dioxide. The esters arise from the attack of the alcohols on the anhydrides. Exploiting the lesser reactivity of tert-butyl alcohol in comparison with other alcohols, a clean synthesis of both carboxylic anhydrides and esters has been set up. In the former reaction, an acid/Boc2O molecular ratio of 2:1 leads to the anhydride in good to excellent yields, depending on the stability of the resulting anhydride to the usual workup conditions. In the latter reaction, stoichiometric mixtures of the acid and Boc2O are allowed to react with a twofold excess of a primary alcohol, secondary alcohol or phenol (R2OH) to give the corresponding esters (RCOOR2). Purification of the products is particularly easy since all byproducts are volatile or water soluble. A very easy chromatography is required only in the case of nonvolatile alcohols. A broad variety of sensitive functional groups is tolerated on both the acid and the alcohol, in particular a high chemoselectivity is observed. In fact, no transesterification processes occur with the acid-sensitive acetoxy group and methyl esters.
Key words
synthetic methods - anhydrides - esters - Lewis acids - magnesium salts
- For recent literature, see among others:
-
1a
Varala R.Nuvula S.Adapa SR. J. Org. Chem. 2006, 71: 8283 -
1b
Chankeshwara SV.Chakraborti AK. Synthesis 2006, 2784 -
1c
Reddy MS.Narender M.Nageswar YVD.Rao KR. Synlett 2006, 1110 -
1d
Heydari A.Hosseini SE. Adv. Synth. Catal. 2005, 347: 1929 -
1e
Bartoli G.Bosco M.Locatelli M.Marcantoni E.Massaccesi M.Melchiorre P.Sambri L. Synlett 2004, 1794 - For recent literature, see among others:
-
2a
Bartoli G.Bosco M.Carlone A.Locatelli M.Marcantoni E.Melchiorre P.Palazzi P.Sambri L. Eur. J. Org. Chem. 2006, 4429 -
2b
Bartoli G.Bosco M.Carlone A.Dalpozzo R.Locatelli M.Melchiorre P.Palazzi P.Sambri L. Synlett 2006, 2104 -
2c
Chen CT.Kuo JH.Pawar VD.Munot YS.Weng SS.Ku CH.Liu CY. J. Org. Chem. 2005, 70: 1188 -
2d
Peri F.Binassi E.Manetto A.Marotta E.Mazzanti A.Righi P.Scardovi N.Rosini G. J. Org. Chem. 2004, 69: 1353 -
2e
Haight AR.Stoner EJ.Peterson MJ.Grover VK. J. Org. Chem. 2003, 68: 8092 -
2f
Ouchi H.Saito Y.Yamamoto Y.Takahata H. Org. Lett. 2002, 4: 585 -
3a
Parrish JP.Salvatore RN.Jung KW. Tetrahedron 2000, 56: 8207 -
3b
Shaikh AAG.Sivaram S. Chem. Rev. 1996, 96: 951 - 5
Greene TW.Wuts PGM. Protective Groups in Organic Synthesis 3rd ed.: Wiley; New York: 1999. p.518-525 - 7
Takeda K.Akiyama A.Nakamura H.Takizawa S.Mizuno Y.Takayanagi H.Harigaya Y. Synthesis 1994, 1063 - 8
Gooßen L.Döhring A. Adv. Synth. Catal. 2003, 345: 943 - 9
Bartoli G.Bosco M.Carlone A.Dalpozzo R.Locatelli M.Melchiorre P.Sambri L. J. Org. Chem. 2006, 71: 9580 -
10a
Pope BM.Sheu S.-J.Stanley RL.Tarbell DS.Yamamoto Y. J. Org. Chem. 1978, 43: 2410 -
10b
Dean CS.Tarbell DS.Friederang AW. J. Org. Chem. 1970, 35: 3393 - 11
Gooßen L.Döhring A. Synlett 2004, 263 - 12
Bartoli G.Bosco M.Locatelli M.Marcantoni E.Melchiorre P.Sambri L. Org. Lett. 2005, 7: 427 - 14 The water molecules associated with the hydrated form of a Lewis acid catalyst allow the formation of a loose transition state, see:
Chakraborti AK.Sharma L.Gulhane R. . Tetrahedron 2003, 59: 7661 - For recent literature, see among others:
-
16a
Pasha MA.Rizwana S. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2005, 44: 420 -
16b
Jabbar S.Banerjee S. Asian J. Chem. 2002, 14: 1655 - 17
Bartoli G.Boeglin J.Bosco M.Locatelli M.Massaccesi M.Melchiorre P.Sambri L. Adv. Synth. Catal. 2005, 347: 33 ; and references cited therein -
18a
Staab HA. Angew. Chem., Int. Ed. Engl. 1962, 1: 351 -
18b
Neises B.Steglich W. Angew. Chem., Int. Ed. Engl. 1978, 17: 522 -
18c
Mitsonobu O. Synthesis 1981, 1 - 20
Biermann U.Metzger JO. J. Am. Chem. Soc. 2004, 126: 10319 - 21
Armesto N.Ferrero M.Fernández S.Gotor V. J. Org. Chem. 2003, 68: 5784 - 22
Dhimitruka I.SantaLucia J. Org. Lett. 2006, 8: 47 - 23
Park YD.Kim JJ.Kim HK.Cho SD.Kang YJ.Park KH.Lee SG.Yoon YJ. Synth. Commun. 2005, 35: 371 - 24
Köster R.Sporzynski A.Schüßler W.Bläser D.Boese R. Chem. Ber. 1994, 127: 1191 - 25
Zhang M.Vedantham P.Flynn DL.Hanson PR. J. Org. Chem. 2004, 69: 8340 - 26
Ashdown A.Hey DH. J. Chem. Soc. 1952, 1513 - 27
Sohn SS.Bode JW. Org. Lett. 2005, 7: 3873 - 28
Bromilow J.Brownlee RTC.Craik DJ.Sadek M.Taft RW. J. Org. Chem. 1980, 45: 2429 - 29
Jones P.Reddy ChK.Knochel P. Tetrahedron 1998, 54: 1471 - 30
Duclos S.Evans HS.Ward TR. Helv. Chim. Acta 2001, 84: 3148 - 31
De Jeso B.Droillard S.Degueil-castaing M.Saux A.Maillard B. Synth. Commun. 1988, 18: 1691 - 32
Davidson NE.Rutherford TJ.Botting NP. Carbohydr. Res. 2001, 330: 295 - 33
Joshi BS.Viswanathan N.Gawad DH.von Philipsborn W. Helv. Chim. Acta 1975, 58: 1551 - 34
Black PJ.Edwards MG.Williams JMJ. Eur. J. Org. Chem. 2006, 4367 - 35
Strazzolini P.Dall’Arche MG.Giumanini AG. Tetrahedron Lett. 1998, 39: 9255 - 36
Wenkert E.Guo M.Lavilla R.Porter B.Ramachandran K.Sheu JH. J. Org. Chem. 1990, 55: 6203 - 37
Wannberg J.Larhed M. J. Org. Chem. 2003, 68: 5750 - 38
Baldwin JE.Adlington RM.Jain AU.Kolhe JN.Perry MWD. Tetrahedron 1986, 42: 4247 - 39
Kumar V.Sharma A.Sinha AK. Helv. Chim. Acta 2006, 89: 483 - 40
Crosignani S.White PD.Steinauer R.Linclau B. Org. Lett. 2003, 5: 853 - 41
Barton P.Laws AP.Page MI. J. Chem. Soc., Perkin Trans. 2 1994, 2021 - 42
Miyashita M.Shiina I.Miyoshi S.Mukaiyama T. Bull. Chem. Soc. Jpn. 1993, 66: 1516 - 43
Venkateswarlu Y.Reddy NS.Ramesh P.Rao MR.Ram TS. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1998, 37: 1264 - 44
Wills AJ.Krishnan-Ghosh Y.Balasubramanian S. J. Org. Chem. 2002, 67: 6646 - 45
Seebach D.Thaler A.Blaser D.Ko SY. Helv. Chim. Acta 1991, 74: 1102 - 46
McElvain SM.Curry MJ. J. Am. Chem. Soc. 1948, 70: 3781 - 47
Bader AR.Kontowicz AD. J. Am. Chem. Soc. 1953, 75: 5416
References
Organic carbonates, for example, find employment as fuel additives, lubricating oils, herbicides, pesticides, plastics and solvents, and for medicinal and biological applications.
6Ref. 5, p 281.
13By comparison, Gooßen obtained methyl 3-phenylpropan-oate(3ac) in 93% yield after 16 hours at room temperature by mixing acid 1a, Moc2O (2c) and Mg(ClO4)2 in nitromethane (4 mL) in the ratio 1:1.3:0.01, respectively.
15In a blank run, ethanol and dicarbonate 2a were allowed to react in the presence of 10 mol% of magnesium chloride at room temperature and, after 48 hours, no appreciable amount of carbonate was detected.
19In contrast to magnesium perchlorate, which has a high activity for esterification (see ref. 9), magnesium chloride is unable to catalyze esterification between acid 1a and alcohol 4a in reaction times comparable with those reported in Table [2] .