Neuropediatrics 2007; 38(3): 143-147
DOI: 10.1055/s-2007-985902
Short Communication

© Georg Thieme Verlag KG Stuttgart · New York

Novel Mutations in Exon 6 of the GFAP Gene Affect a Highly Conserved IF Motif in the Rod Domain 2B and are Associated with Early Onset Infantile Alexander Disease

H. Hartmann 1 , J. Herchenbach 2 , U. Stephani 3 , P. Ledaal 4 , F. Donnerstag 5 , T. Lücke 1 , A. M. Das 1 , H. J. Christen 6 , M. Hagedorn 2 , M. Meins 2
  • 1Department of Paediatrics, Hannover Medical School, Hannover, Germany
  • 2Department of Human Genetics, Ruhr-University Bochum, Bochum, Germany
  • 3Neuropaediatric Department, University Children's Hospital Kiel, Kiel, Germany
  • 4Sonderborg Sygehus, Sonderborg, Denmark
  • 5Department of Neuroradiology, Hannover Medical School, Hannover, Germany
  • 6Neuropaediatric Department, Kinderkrankenhaus Auf der Bult, Hannover, Germany
Further Information

Publication History

received 01. 06. 2006

accepted 07. 08. 2007

Publication Date:
05 November 2007 (online)

Abstract

Alexander disease is a rare disorder of cerebral white matter due to a dysfunction of astrocytes. The most common infantile form presents as a megalencephalic leukodystrophy. Mutations of the GFAP gene, encoding Glial Fibrillary Acidic Protein, have been recognized as the cause of Alexander disease. Glial Fibrillary Acidic Protein is the major intermediate filament protein in astrocytes, its functional rod domain is conserved in sequence and structure among other intermediate filament proteins. We report here two cases of infantile Alexander disease with early onset and severe course, caused by de novo mutations A364 V and Y366C. Both affected GFAP residues are part of a highly conserved coiled-coil trigger motif in the C-terminal end of segment 2B, probably required for the stability of intermediate filament molecules. Comparable effects are seen with mutations of the corresponding residues of the gene coding for keratin 14, another intermediate filament, this further supports the hypothesis that these positions of the trigger motif are generally critical for a normal function of intermediate filaments.

References

  • 1 Alexander WS. Progressive fibrinoid degeneration of fibrillary astrocytes associated with mental retardation in a hydrocephalic infant.  Brain. 1949;  72 373-381
  • 2 Bobele GB, Garnica A, Schaefer GB. et al . Neuroimaging findings in Alexander's disease.  J Child Neurol. 1990;  5 253-258
  • 3 Brenner M, Johnson AB, Boespflug-Tanguy O, Rodriguez D, Goldman JE, Messing A. Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease.  Nat Genet. 2001;  27 117-120
  • 4 Chao SC, Yang MH, Lee SF. Novel KRT14 mutation in a Taiwanese patient with epidermolysis bullosa simplex (Kobner type).  J Formos Med Assoc. 2002;  101 287-290
  • 5 Ciubotaru D, Bergman R, Baty D. et al . Epidermolysis bullosa simplex in Israel: clinical and genetic features.  Arch Dermatol. 2003;  139 498-505
  • 6 Einspieler C, Cioni G, Paolicelli PB. et al . The early markers for later dyskinetic cerebral palsy are different from those for spastic cerebral palsy.  Neuropediatrics. 2002;  33 73-78
  • 7 Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000).  Neurochem Res. 2000;  25 1439-1451
  • 8 Garcia L, Gascon G, Ozand P, Yaish H. Increased intracranial pressure in Alexander disease: a rare presentation of white-matter disease.  J Child Neurol. 1992;  7 168-171
  • 9 Herndon RM, Rubinstein LJ, Freeman JM, Mathieson G. Light and electron microscopic observations on Rosenthal fibers in Alexander's disease and in multiple sclerosis.  J Neuropathol Exp Neurol. 1970;  29 524-551
  • 10 Herrmann H, Strelkov SV, Feja B. et al . The intermediate filament protein consensus motif of helix 2B: its atomic structure and contribution to assembly.  J Mol Biol. 2000;  298 817-832
  • 11 Hess DC, Fischer AQ, Yaghmai F, Figueroa R, Akamatsu Y. Comparative neuroimaging with pathologic correlates in Alexander's disease.  J Child Neurol. 1990;  5 248-252
  • 12 Li R, Johnson AB, Salomons G. et al . Glial fibrillary acidic protein mutations in infantile, juvenile, and adult forms of Alexander disease.  Ann Neurol. 2005;  57 310-326
  • 13 Meins M, Brockmann K, Yadav S. et al . Infantile Alexander disease: a GFAP mutation in monozygotic twins and novel mutations in two other patients.  Neuropediatrics. 2002;  33 194-198
  • 14 Namekawa M, Takiyama Y, Aoki Y. et al . Identification of GFAP gene mutation in hereditary adult-onset Alexander's disease.  Ann Neurol. 2002;  52 779-785
  • 15 Nawashiro H, Messing A, Azzam N, Brenner M. Mice lacking GFAP are hypersensitive to traumatic cerebrospinal injury.  Neuroreport. 1998;  9 1691-1696
  • 16 Nielsen AL, Holm IE, Johansen M, Bonven B, Jorgensen P, Jorgensen AL. A new splice variant of glial fibrillary acidic protein, GFAP epsilon, interacts with the presenilin proteins.  J Biol Chem. 2002;  277 29983-29991
  • 17 Otani N, Nawashiro H, Nomura N. et al . A role of glial fibrillary acidic protein in hippocampal degeneration after cerebral trauma or kainate-induced seizure.  Acta Neurochir Suppl. 2003;  86 267-269
  • 18 Rodriguez D, Gauthier F, Bertini E. et al . Infantile alexander disease: spectrum of gfap mutations and genotype-phenotype correlation.  Am J Hum Genet. 2001;  69 1134-1140
  • 19 Rugg EL, Baty D, Shemanko CS. et al . DNA based prenatal testing for the skin blistering disorder epidermolysis bullosa simplex.  Prenat Diagn. 2000;  20 371-377
  • 20 Rugg EL, Leigh IM. The keratins and their disorders.  Am J Med Genet. 2004;  131C 4-11
  • 21 Sawaishi Y, Yano T, Takaku I, Takada G. Juvenile Alexander disease with a novel mutation in glial fibrillary acidic protein gene.  Neurology. 2002;  58 1541-1543
  • 22 Schuster V, Horwitz AE, Kreth HW. Alexander's disease: cranial MRI and ultrasound findings.  Pediatr Radiol. 1991;  21 133-134
  • 23 Springer S, Erlewein R, Naegele T. et al . Alexander disease - classification revisited and isolation of a neonatal form.  Neuropediatrics. 2000;  31 86-92
  • 24 Strelkov SV, Herrmann H, Geisler N. et al . Conserved segments 1A and 2B of the intermediate filament dimer: their atomic structures and role in filament assembly.  Embo J. 2002;  21 1255-1566
  • 25 Knaap MS van der, Naidu S, Breiter SN. et al . Alexander disease: diagnosis with MR imaging.  AJNR Am J Neuroradiol. 2001;  22 541-552
  • 26 Knaap MS van der, Valk J, Neeling N de, Nauta JJ. Pattern recognition in magnetic resonance imaging of white matter disorders in children and young adults.  Neuroradiology. 1991;  33 478-493
  • 27 Wu KC, Bryan JT, Morasso MI. et al . Coiled-coil trigger motifs in the 1B and 2B rod domain segments are required for the stability of keratin intermediate filaments.  Mol Biol Cell. 2000;  11 3539-3558

Correspondence

Dr. H. Hartmann

Medizinische Hochschule Hannover

Kinderklinik

Carl-Neuberg-Strasse 1

30623 Hannover

Germany

Phone: +49/511/532 32 47

Fax: +49/511/532 32 22

Email: hartmann.hans@mh-hannover.de

    >