References and Notes
-
1a
Riu-Aumatell M.
Peztamames EL.
Buxaderas S.
J. Agric. Food Chem.
2005,
53:
7837
-
1b
Ito N.
Wada S.
Yamamoto Y.
Takagaki H.
Nakamura H.
Biosci. Biotechnol. Biochem.
2005,
69:
2416
- 2
Fukuhara K.
Li X.-X.
Okamura M.
Nakahara K.
Hayata Y.
J. Jpn. Soc. Hort. Sci.
2005,
74:
300 ; and the references cited therein
- 3 Endo M, Nakano Y, and Yamada T. inventors; JP Patent 2005002010.
-
4a
Nemoto H.
Tetrahedron Lett.
1994,
35:
7785
-
4b
Nemoto H.
Tsutsumi H.
Yuzawa S.
Peng X.
Zhong W.
Xie J.
Miyoshi N.
Suzuki I.
Shibuya M.
Tetrahedron Lett.
2004,
45:
1667
-
4c
Zhong W.
Xie J.
Peng X.
Kawamura T.
Nemoto H.
Tetrahedron Lett.
2005,
46:
7451
-
4d
Nemoto H.
Yamada T.
Kagaku (Kyoto)
2005,
60:
20
-
4e
Nemoto H.
Peng X.
Zhong W.
Xie J.
Kawamura T.
Nishida M.
Synlett
2005,
3103
-
4f Nemoto H. inventors; PCT Int. Appl., WO 2005080300.
-
4g
Sakamoto K.
Nemoto H.
Yuki Gosei Kagaku Kyokaishi
2007,
626
- 5
Blanco L.
Guibé-jampel E.
Rousseau G.
Tetrahedron Lett.
1988,
28:
1915
- 8 A technology employing a flow-system simulated moving bed (SMB) column has been applied for the industrial-scale reaction. For an example of recent papers about SMB, see: Paredes G.
Mazzotti M.
J. Chromatogr. A
2007,
1142:
56
- 11
Costa AL.
Piazza MG.
Tagliavini E.
Trombini C.
Umani-Ronchi A.
J. Am. Chem. Soc.
1993,
115:
7001
- 12
Reetz MT.
Pure Appl. Chem.
1988,
60:
1607
- 16 Endo M, Nakano Y, and Yamada T. inventors; PCT Int. Appl., WO 2004106320.
6 The synthetic route shown in Scheme
[1]
was also applicable to all the lactones 1 (n = 3-6).
7 The ΔR
f
value between the isopropyl esters 5a and 5b was as large as those between the corresponding methyl or ethyl esters. Thus, the high efficiency of chiral resolution of 3 is not due to the isopropyl ester moiety. Incidentally, the chemical yield of 3 from lactone 2 (85%) was much higher than the chemical yields of the corresponding methyl or ethyl esters (<8%), probably because reversible reaction from 3 to 2 is much slower than those from the corre-sponding methyl or ethyl esters to 2. This is the reason for the choice of the isopropyl ester.
9 TLC equipment was obtained from Merck (1.05715.0009, Silica gel 60F254).
10 Although preparations of ca. 30 kg of (R)- and (S)-2 were also carried out in similar manner, it was not a simple batch procedure. Thus, the procedure for a ca. 1-kg scale is described. After isolation and purification, optical rotations of the two enantiomers were measured under new conditions. (R)-2: [α]D
40 +46.9° (c = 1.00, heptane); (S)-2: [α]D
40 -46.4° (c = 1.00, heptane).
13
8a: a colorless oil; [α]D
20 -36.0° (c = 2.765, CHCl3). FTIR: 3074, 2927, 1639, 1434 cm-1. 1H NMR (400 MHz, CDCl3): δ = 5.76-5.91 (m, 2 H), 5.00-5.07 (m, 4 H), 3.75-3.84 (m, 3 H), 2.16-2.28 (m, 3 H), 2.04-2.09 (m, 2 H), 1.93 (ddd, J = 5.2, 6.8, 12.0 Hz, 1 H), 1.68 (dt, J = 7.6, 12.0 Hz, 1 H), 1.48-1.62 (m, 8 H), 1.24-1.31 (m, 9 H), 0.88 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 136.9 (CH), 135.7 (CH), 117.6 (CH2), 116.5 (C), 73.2 (CH), 65.9 (CH2), 54.6 (C), 40.6 (CH2), 39.8 (CH2), 38.4 (CH2), 36.5 (CH2), 35.6 (CH2), 35.3 (CH2), 31.9 (CH2), 29.9 (CH2), 29.4 (CH2), 25.1 (CH2), 22.8 (CH2), 21.6 (CH2), 14.2 (CH3). EI-MS: m/z = 321 [M + 1]+. HRMS (EI): m/z calcd for C21H36O2: 320.2715; found: 320.2714.
8b: a colorless oil; [α]D
20 -6.7° (c = 4.17, CHCl3). FTIR: 3074, 2932, 1639, 1434 cm-1. 1H NMR (400 MHz, CDCl3): δ = 5.78-5.90 (m, 2 H), 4.98-5.06 (m, 4 H), 3.71-3.80 (m, 3 H), 2.32 (t, J = 6.0 Hz, 2 H), 2.25 (dd, J = 6.4, 13.6 Hz, 1 H), 2.03-2.10 (m, 2 H), 1.92 (dt, J = 6.0, 12.4 Hz, 1 H), 1.66 (dt, J = 7.6, 12.0 Hz, 1 H), 1.38-1.63 (m, 8 H), 1.24-1.31 (m, 9 H), 0.88 (t, J = 6.4 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 136.9 (CH), 135.6 (CH), 117.8 (CH2), 116.5 (C), 73.4 (CH), 65.7 (CH2), 54.6 (C), 40.6 (CH2), 40.5 (CH2), 38.4 (CH2), 36.7 (CH2), 35.1 (CH2), 34.8 (CH2), 31.9 (CH2), 29.8 (CH2), 29.4 (CH2), 25.6 (CH2), 22.7 (CH2), 21.6 (CH2), 14.2 (Me). EI-MS: m/z = 321 [M + 1]+. HRMS (EI): m/z calcd for C21H36O2: 320.2715; found: 320.2691.
14
(
S
)-9: [α]D
20 -10.8° (c = 1.56, CHCl3). FTIR: 3076, 2928, 2857, 1640, 1460 cm-
1. 1H NMR (400 MHz, CDCl3): δ = 5.77-5.87 (m, 1 H), 5.00-5.05 (m, 2 H), 3.65-3.71 (m, 1 H), 2.18-2.23 (m, 2 H), 1.29-1.41 (m, 15 H), 0.89 (s, 9 H), 0.05 (s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 135.5 (CH), 116.5 (CH2), 72.1 (CH), 42.0 (CH2), 36.9 (CH2), 31.9 (CH2), 29.8 (CH2), 29.4 (CH2), 26.0 (CH2), 25.4 (CH2), 22.7 (CH2), 18.3 (C), 14.2 (Me), -4.2 (Me), -4.4 (Me). EI-MS: m/z = 285 [M + 1]+. HRMS (EI): m/z calcd for C17H36OSi: 284.2535; found: 284.2543.
(
R
)-9: [α]D
20 +10.1° (c = 1.64, CHCl3). FTIR: 3076, 2930, 1642, 1462 cm-
1. 1H NMR (400 MHz, CDCl3): δ = 5.77-5.87 (m, 1 H), 5.00-5.05 (m, 2 H), 3.65-3.71 (m, 1 H), 2.18-2.23 (m, 2 H), 1.29-1.41 (m, 15 H), 0.89 (s, 9 H), 0.05 (s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 135.5 (CH), 116.5 (CH2), 72.1 (CH), 42.0 (CH2), 36.9 (CH2), 31.9 (CH2), 29.8 (CH2), 29.4 (CH2), 26.0 (CH2), 25.4 (CH2), 22.7 (CH2), 18.3 (C), 14.2 (Me), -4.2 (Me), -4.4 (Me). EI-MS: m/z = 283 [M - 1]+. HRMS (EI): m/z calcd for C17H36OSi: 284.2535; found: 284.2529.
15
(
S
)-10: colorless oil; [α]D
20 +2.4° (c = 1.56, CHCl3). FTIR: 3054, 2928, 2856, 2719, 1727, 1470 cm-
1. 1H NMR (400 MHz, CDCl3): δ = 9.82 (s, 1 H), 4.15-4.20 (m, 1 H), 2.51-2.52 (m, 2 H), 1.51-1.53 (m, 2 H), 1.20-1.37 (m, 10 H), 0.88 (s, 12 H), 0.08 (s, 3 H), 0.06 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 202.3 (CH), 68.3 (CH), 50.9 (CH2), 37.9 (CH2), 31.8 (CH2), 29.6 (CH2), 29.3 (CH2), 25.8 (3 × Me), 25.2 (CH2), 22.7 (CH2), 18.1 (C), 14.2 (Me), -4.3 (Me), -4.6 (Me). EI-MS: m/z = 286 [M]+. HRMS (EI): m/z calcd for C16H34O2Si: 286.2328; found: 286.2321.
(
R
)-10: [α]D
20 -2.2° (c = 2.42, CHCl3). FTIR: 3054, 2930, 2720, 1728, 1585, 1470 cm-
1. 1H NMR (400 MHz, CDCl3): δ = 9.82 (s, 1 H), 4.15-4.20 (m, 1 H), 2.51-2.52 (m, 2 H), 1.51-1.53 (m, 2 H), 1.20-1.37 (m, 10 H), 0.88 (s, 12 H), 0.08 (s, 3 H), 0.06 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 202.3 (CH), 68.3 (CH), 50.9 (CH2), 37.9 (CH2), 31.8 (CH2), 29.6 (CH2), 29.3 (CH2), 25.8 (3 × Me), 25.2 (CH2), 22.7 (CH2), 18.1 (C), 14.2 (Me), -4.3 (Me), -4.6 (Me). EI-MS: m/z = 287 [M + 1]+. HRMS (EI): m/z calcd for C16H34O2Si: 286.2328; found: 286.2325.
17 It is well known that compounds bearing a hydroxyl group at an asymmetric allylic or benzylic position can be separated more efficiently than saturated aliphatic alcohols when using most of the other chiral resolving agents. CPF has a similar tendency as described above. However, our investigations have shown that the separation efficiency of CPF is much greater than that of other agents. Chiral resolution of both 3 and 7 was successful and efficient, and we know no other reason for this high efficiency.