Synlett 2007(10): 1529-1532  
DOI: 10.1055/s-2007-982530
LETTER
© Georg Thieme Verlag Stuttgart · New York

Thia-Michael Addition Using Cheap and Odorless S-Alkylisothiouronium Salts as Thiol Equivalents in Water

Yan Zhaoa, Ze-Mei Ge*a, Tie-Ming Chenga, Run-Tao Li*a,b
a School of Pharmaceutical Sciences, Peking University, Beijing 100083, P. R. of China
b State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100083, P. R. of China
Fax: +86(10)82716956; e-Mail: zmge@bjmu.edu.cn;
Further Information

Publication History

Received 2 February 2007
Publication Date:
06 June 2007 (online)

Abstract

S-Alkylisothiouronium salt has been found to be a nontoxic, odorless and simply operational alternative of thiol for the thia-Michael addition with electron-deficient olefins. The reactions were carried out under alkaline conditions in water at room temperature within 5-20 minutes to afford the expected products in good to excellent yields.

    References and Notes

  • 1a Organosulfur Chemistry   Vols. 1-2:  Page PCB. Springer; Berlin: 1999. 
  • 1b Shono T. Matsumura Y. Kashimura S. Hatanaka K. J. Am. Chem. Soc.  1979,  101:  4752 
  • 2a Khan AT. Ghosh S. Choudhury LH. Eur. J. Org. Chem.  2006,  2226 
  • 2b Fetterly BM. Jana NK. Verkade JG. Tetrahedron  2006,  62:  440 
  • 2c Li BJ. Jiang L. Liu M. Chen YC. Ding LS. Wu Y. Synlett  2005,  603 
  • 2d Firouzabadi H. Iranpoor N. Jafari AA. Synlett  2005,  299 
  • 2e Chaudhuri MK. Hussain S. Kantam ML. Neelima B. Tetrahedron Lett.  2005,  46:  8329 
  • 2f Caupène C. Boudou C. Perrio S. Metzner P. J. Org. Chem.  2005,  70:  2812 
  • 2g Alam MM. Varala R. Adapa SR. Tetrahedron Lett.  2003,  44:  5115 
  • 2h Bandini M. Cozzi PG. Giacomini M. Melchiorre P. Selva S. Umani RA. J. Org. Chem.  2002,  67:  3700 
  • 2i Abrouki Y. Zahouily M. Rayadh A. Bahlaouan B. Sebti S. Tetrahedron Lett.  2002,  43:  8951 
  • 2j Zahouily M. Abrouki Y. Rayadh A. Tetrahedron Lett.  2002,  43:  7729 
  • 2k Cheng S. Comer DD. Tetrahedron Lett.  2002,  43:  1179 
  • 2l Kobayashi S. Ogawa C. Kawamura M. Sugiura M. Synlett  2001,  983 
  • 2m Mori Y. Kakumoto K. Manabe K. Kobayashi S. Tetrahedron Lett.  2000,  41:  3107 
  • 2n Saito M. Nakajima M. Hashimoto S. Tetrahedron  2000,  56:  9589 
  • 2o Emori E. Arai T. Sasai H. Shibasaki M. J. Am. Chem. Soc.  1998,  120:  4043 
  • 2p Nishimura K. Ono M. Nagaoka Y. Tomioka K. J. Am. Chem. Soc.  1997,  119:  12974 
  • 2q Kimura M. Matsubara S. Sawaki Y. Iwamura H. Tetrahedron Lett.  1986,  27:  4177 
  • 2r Mukaiyama T. Ikegawa A. Suzuki K. Chem. Lett.  1981,  2:  165 
  • 2s Cohen T. Mura AJ. Shull DW. Fogel ER. Ruffner RJ. Falck JR. J. Org. Chem.  1976,  41:  3218 
  • 3a Chu CM. Gao S. Sastry MNV. Kuo CW. Lu C. Liu JT. Yao CF. Tetrahedron  2007,  63:  1863 
  • 3b Khatik GL. Sharma G. Kumar R. Chakraborti AK. Tetrahedron  2007,  63:  1200 
  • 3c Firouzabadi H. Iranpoor N. Jafarpour M. Ghaderi A. J. Mol. Catal. A: Chem.  2006,  249:  98 
  • 3d Pore DM. Soudagar MS. Desai UV. Thopate TS. Wadagaonkar PP. Tetrahedron Lett.  2006,  47:  9325 
  • 3e Gao S. Tzeng T. Sastry MNV. Chu CM. Liu JT. Lin C. Yao CF. Tetrahedron Lett.  2006,  47:  1889 
  • 3f Chu CM. Gao S. Sastry MNV. Yao CF. Tetrahedron Lett.  2005,  46:  4971 
  • 3g Rajabi F. Saidi MR. J. Sulfur Chem.  2005,  26:  251 
  • 3h Moghaddam FM. Bardajee GR. Veranlou ROC. Synth. Commun.  2005,  35:  2427 
  • 3i Srivastava N. Banik BK. J. Org. Chem.  2003,  68:  2109 
  • 3j Sreekumar R. Rugmini P. Padmakumar R. Tetrahedron Lett.  1997,  38:  6557 
  • 3k Trost BM. Keeley DE. J. Org. Chem.  1975,  40:  2013 
  • 4 Meèiarová M. Toma S. Kotrusz P. Org. Biomol. Chem.  2006,  4:  1420 
  • 5a Garg SK. Kumar R. Chakraborti AK. Tetrahedron Lett.  2005,  46:  1721 
  • 5b Firouzabadi H. Iranpoor N. Jafari AA. Adv. Synth. Catal.  2005,  347:  655 
  • 6a Yadav JS. Reddy BVS. Baishya G. J. Org. Chem.  2003,  68:  7098 
  • 6b Ranu BC. Dey SS. Hajra A. Tetrahedron  2003,  59:  2417 
  • 7 Khatik GL. Kumar R. Chakraborti AK. Org. Lett.  2006,  8:  2433 
  • 8 Nishide K. Miyamoto T. Kumar K. Ohsugi S. Node M. Tetrahedron Lett.  2002,  43:  8569 
  • 9 Singh H. Batra MS. Indian J. Chem., Sect B: Org. Chem. Incl. Med. Chem.  1987,  26:  1111 
  • 10 Ranu BC. Mandal T. Synlett  2004,  1239 
  • 11a Dong DW. Yu HF. Ouyang Y. Liu Q. Bi XH. Lu YM. Synlett  2006,  283 
  • 11b Yu HF. Dong DW. Ouyang Y. Liu Q. Wang Y. Lett. Org. Chem.  2005,  2:  755 
  • 11c Dong DW. Ouyang Y. Yu HF. Liu Q. Liu J. Wang M. Zhu J. J. Org. Chem.  2005,  70:  4535 
  • 11d Liu Q. Che GB. Yu HF. Liu YC. Zhang JP. Zhang Q. Dong DW. J. Org. Chem.  2003,  68:  9148 
  • 11e Ouyang Y. Yu HF. Dong DW. Liu Q. Dongbei Shida Xuebao (Ziran Kexueban)  2006,  38:  67 
  • 12a Lutz GA. Bearse AE. Leonard JE. Croxton FC. J. Am. Chem. Soc.  1948,  70:  4135 
  • 12b Frank RL. Smith PV. J. Am. Chem. Soc.  1946,  68:  2103 
  • 13a Zorin VV. Nikolaeva SV. Zlotskii DL. Zh. Org. Khim.  1985,  21:  660 
  • 13b Srivastava N. Banik BK. J. Org. Chem.  2003,  68:  2109 
  • 13c Dickschat JS. Helmke E. Schulz S. Chem. Biodiversity  2005,  2:  318 
  • 13d Anderson MB. Ranasinghe MG. Palmer JT. Fuchs PL. J. Org. Chem.  1988,  53:  3125 
  • 13e Kaptein B. Barf G. Kellogg RM. Bolhuis FV. J. Org. Chem.  1990,  55:  1890 
  • 13f Goda S. Yamada K. Yamamoto Y. Mackawa H. Nishiguchi I. J. Electroanal. Chem.  2003,  545:  129 
  • 13g Tokmurzin KK. Kozhabekov ZE. Zhangutov NR. Kuanyshkaliev KA. Zh. Org. Khim.  1981,  17:  443 
  • 14 Bell R. Cottam PD. Davies J. Jones DN. J. Chem. Soc., Perkin. Trans. 1  1981,  2106 
15

Typical Procedure for the Thia-Michael Addition of S -Alkylisothiouronium Salts to Electron-Deficient Olefins: To a magnetically stirred solution of an S-alkylisothio-uronium salt (3 mmol) and an electron-deficient olefin (3 mmol) in H2O (5 mL) was slowly added an aq NaOH solution (7.5 mmol NaOH in 2 mL H2O), and then the mixture was stirred at r.t. for the indicated time in Table [1] . Then, the reaction mixture was extracted with EtOAc (3 × 10 mL). The combined organic extracts were dried over Na2SO4 and concentrated under reduced pressure. The residue was purified by column chromatography over silica gel using EtOAc-PE as eluent to afford the corresponding product. All the new compounds were characterized on the basis of 1H NMR and elemental analysis and the structures of the known compounds were confirmed by 1H NMR spectra, which were consistent with literature data.

16

Spectroscopic data of the selected compound:
3-Methylthiopropanenitrile 14 (3j; Table 1, entry 10): colorless liquid. 1H NMR (300 MHz, CDCl3): δ = 2.20 (s, 3 H), 2.67 (t, J = 6.9 Hz, 2 H), 2.78 (t, J = 6.9 Hz, 2 H).
3-Cyclopentylthiopropanenitrile (3u; Table 1, entry 21): colorless liquid. 1H NMR (300 MHz, CDCl3): δ = 1.48-1.62 (m, 4 H), 1.73-1.77 (m, 2 H), 1.97-2.05 (m, 2 H), 2.64 (t, J = 7.2 Hz, 2 H), 2.81 (t, J = 7.2 Hz, 2 H), 3.13-3.23 (m, 1 H). Anal. Calcd for C8H13NS: C, 61.89; H, 8.44; N, 9.02. Found: C, 61.92; H, 8.274; N, 8.902.
3-Phenyl-3-benzylthiopropanenitrile (3v; Table 1; entry 22): colorless oil. 1H NMR (300 MHz, CDCl3): δ = 2.80 (dd, J = 2.5, 7.5 Hz, 2 H), 3.52 (d, J = 13.8 Hz), 3.66 (d, J = 13.8 Hz, 1 H), 3.90 (t, J = 7.2 Hz, 1 H), 7.21-7.41 (m, 10 H). Anal. Calcd for C16H15NS: C, 75.8; H, 5.91; N, 5.53. Found: C, 75.70; H, 6.04; N, 5.41.