Viszeralchirurgie 2007; 42(3): 125-133
DOI: 10.1055/s-2007-981186
Aktuelle Chirurgie

© Georg Thieme Verlag Stuttgart · New York

Tumor Proteomics - Neue Wege in der Diagnostik kolorektaler Karzinome

Cancer Proteomics - Innovative Approaches in Colorectal Cancer DiagnosticsF. G. Bader1 , 2 , J. K. Habermann1 , K. Zimmermann1 , T. Gemoll1 , C. Franke1 , H.-P. Bruch1 , G. Auer2 , U. J. Roblick1 , 2
  • 1Klinik für Chirurgie, Arbeitsgruppe Tumorbiomics, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Deutschland
  • 2Karolinska Biomic Center, KBC, Karolinska Institutet, Stockholm, Schweden
Further Information

Publication History

Publication Date:
27 June 2007 (online)

Zusamenfassung

Die Frühdiagnose des kolorektalen Karzinoms respektive der zum Malignom führenden Vorstufen ist der Schlüssel zur kurativen Therapie dieser Erkrankung. Trotz Screening-Methoden werden über zwei Drittel aller kolorektalen Karzinome erst im Stadium III und IV diagnostiziert und bedingen so die schlechte Prognose. Die Proteomforschung („PROTEins expressed by a genOME”) ist ein neues Feld der Wissenschaft, in dem Zusammensetzung, Struktur, Funktion und Interaktion von Polypeptiden untersucht werden, die als potenzielle Biomarker zur Früherkennung fungieren können. Schon heute sind Proteomanalysen auf Basis der zweidimensionalen Gelelektrophorese (2-DE), der Massenspektrometrie (MALDI) und der SELDI-Technologie in der Lage, mit hoher Sensitivität und Spezifität den Tumorerkrankten vom Gesunden zu unterscheiden. Die Identifikation tumorentitätsspezifischer Markerproteine wird es zukünftig möglich machen, personalisierte Behandlungsstrategien zu entwickeln und birgt somit das Potenzial, die Überlebensraten von Patienten mit kolorektalen Karzinomen deutlich zu beeinflussen. Es ist vorhersehbar, dass in naher Zukunft die klinische Medizin die Ergebnisse der Proteom- und Genomforschung in die Routine integrieren wird. Bei diesem Transfer von „bench to bedside” wird dem Chirurgen eine tragende Rolle zukommen.

Abstract

Detection of colorectal cancer at an early stage or even before it occurs, is critical when curative treatment is intented. Despite all possibilties to screen for colorectal cancer, more than two thirds are diagnosed at advanced stages (UICC III and IV) of disease. This determines the growing demand for efficient diagnostic and prognostic markers. Proteomic research (“PROTEins expressed by a genOME”) approchaches issues like protein abundance, posttranslational polypeptide modification and protein-protein interaction as well as functional and dynamic processes within the cell and can therefore lead to biomarker discovery for early disease detection. Already now, proteomics based on 2-dimensional gel electrophoresis, masspectrometry (MALDI) and SELDI-technology, can distinguish a healty from the tumor patient with high sensitivity and specificity. The identification of tumor specific proteins will enable us to develop patient tailored treatment strategies, that have the potential to improve the survival of patients suffering from colorectal cancer. It can be foreseen that clinical medicine will integrate the results of proteome and genome research into daily routine. Within this transfer from “bench to bedside” the surgeon will play a pivotal role.

Literatur

  • 1 Parkin D M, Pisani P, Ferlay J. Global cancer statistics.  CA Cancer J Clin. 1999;  49 31 33-64
  • 2 Fleischer D E, Goldberg S B, Browning T H, Cooper J N, Friedman E, Goldner F H, Keeffe E B, Smith L E. Detection and surveillance of colorectal cancer.  Jama. 1989;  261 580-585
  • 3 Mak T, Lalloo F, Evans D G, Hill J. Molecular stool screening for colorectal cancer.  Br J Surg. 2004;  91 790-800
  • 4 Fearnhead N S, Britton M P, Bodmer W F. The ABC of APC.  Hum Mol Genet. 2001;  10 721-733
  • 5 Howe J R, Guillem J G. The genetics of colorectal cancer.  Surg Clin North Am. 1997;  77 175-195
  • 6 Andreyev H J, Norman A R, Cunningham D, Oates J R, Clarke P A. Kirsten ras mutations in patients with colorectal cancer: the multicenter “RASCAL” study.  J Natl Cancer Inst. 1998;  90 675-684
  • 7 Sidransky D, Tokino T, Hamilton S R, Kinzler K W, Levin B, Frost P, Vogelstein B. Identification of ras oncogene mutations in the stool of patients with curable colorectal tumors.  Science. 1992;  256 102-105
  • 8 Vogelstein B, Fearon E R, Hamilton S R, Kern S E, Preisinger A C, Leppert M, Nakamura Y, White R, Smits A M, Bos J L. Genetic alterations during colorectal-tumor development.  N Engl J Med. 1988;  319 525-532
  • 9 Goh H S, Yao J, Smith D R. p 53 point mutation and survival in colorectal cancer patients.  Cancer Res. 1995;  55 5217-5221
  • 10 Hamelin R, Laurent-Puig P, Olschwang S, Jego N, Asselain B, Remvikos Y, Girodet J, Salmon R J, Thomas G. Association of p 53 mutations with short survival in colorectal cancer.  Gastroenterology. 1994;  106 42-48
  • 11 Kressner U, Inganas M, Byding S, Blikstad I, Pahlman L, Glimelius B, Lindmark G. Prognostic value of p 53 genetic changes in colorectal cancer.  J Clin Oncol. 1999;  17 593-599
  • 12 Tortola S, Marcuello E, Gonzalez I, Reyes G, Arribas R, Aiza G, Sancho F J, Peinado M A, Capella G. p 53 and K-ras gene mutations correlate with tumor aggressiveness but are not of routine prognostic value in colorectal cancer.  J Clin Oncol. 1999;  17 1375-1381
  • 13 Ahnen D J, Feigl P, Quan G, Fenoglio-Preiser C, Lovato L C, Bunn Jr  P A, Stemmerman G, Wells J D, Macdonald J S, Meyskens Jr  F L. Ki-ras mutation and p 53 overexpression predict the clinical behavior of colorectal cancer: a Southwest Oncology Group study.  Cancer Res. 1998;  58 1149-1158
  • 14 Watanabe T, Wu T T, Catalano P J, Ueki T, Satriano R, Haller D G, Benson 3rd  A B, Hamilton S R. Molecular predictors of survival after adjuvant chemotherapy for colon cancer.  N Engl J Med. 2001;  344 1196-1206
  • 15 Carpelan-Holmstrom M, Louhimo J, Stenman U H, Alfthan H, Haglund C. CEA, CA 19-9 and CA 72-4 improve the diagnostic accuracy in gastrointestinal cancers.  Anticancer Res. 2002;  22 2311-2316
  • 16 Chapman M A, Buckley D, Henson D B, Armitage N C. Preoperative carcinoembryonic antigen is related to tumour stage and long-term survival in colorectal cancer.  Br J Cancer. 1998;  78 1346-1349
  • 17 Harrison L E, Guillem J G, Paty P, Cohen A M. Preoperative carcinoembryonic antigen predicts outcomes in node-negative colon cancer patients: a multivariate analysis of 572 patients.  J Am Coll Surg. 1997;  185 55-59
  • 18 Korenaga D, Saeki H, Mawatari K, Orita H, Maekawa S, Ikeda T, Sugimachi K. Serum carcinoembryonic antigen concentration doubling time correlates with tumor biology and life expectancy in patients with recurrent gastrointestinal carcinoma.  Arch Surg. 1997;  132 188-194
  • 19 Moertel C G, Fleming T R, Macdonald J S, Haller D G, Laurie J A, Tangen C. An evaluation of the carcinoembryonic antigen (CEA) test for monitoring patients with resected colon cancer.  Jama. 1993;  270 943-947
  • 20 Slentz K, Senagore A, Hibbert J, Mazier W P, Talbott T M. Can preoperative and postoperative CEA predict survival after colon cancer resection?.  Am Surg. 1994;  60 528-531 , discussion 531-522
  • 21 Glover C, Douse P, Kane P, Karani J, Meire H, Mohammadtaghi S, Allen-Mersh T G. Accuracy of investigations for asymptomatic colorectal liver metastases.  Dis Colon Rectum. 2002;  45 476-484
  • 22 Mori M, Tomoda H, Ishida T, Kido A, Shimono R, Matsushima T, Kuwano H, Sugimachi K. Surgical resection of pulmonary metastases from colorectal adenocarcinoma. Special reference to repeated pulmonary resections.  Arch Surg. 1991;  126 1297-1301 , discussion 1302
  • 23 Crawford N P, Colliver D W, Galandiuk S. Tumor markers and colorectal cancer: utility in management.  J Surg Oncol. 2003;  84 239-248
  • 24 Banks R E, Dunn M J, Forbes M A, Stanley A, Pappin D, Naven T, Gough M, Harnden P, Selby P J. The potential use of laser capture microdissection to selectively obtain distinct populations of cells for proteomic analysis - preliminary findings.  Electrophoresis. 1999;  20 689-700
  • 25 Craven R A, Banks R E. Laser capture microdissection and proteomics: possibilities and limitation.  Proteomics. 2001;  1 1200-1204
  • 26 Wulfkuhle J D, McLean K C, Paweletz C P, Sgroi D C, Trock B J, Steeg P S, Petricoin 3rd  E F. New approaches to proteomic analysis of breast cancer.  Proteomics. 2001;  1 1205-1215
  • 27 Alaiya A, Roblick U, Egevad L, Carlsson A, Franzen B, Volz D, Huwendiek S, Linder S, Auer G. Polypeptide expression in prostate hyperplasia and prostate adenocarcinoma.  Anal Cell Pathol. 2000;  21 1-9
  • 28 Alaiya A A, Franzen B, Fujioka K, Moberger B, Schedvins K, Silfversvard C, Linder S, Auer G. Phenotypic analysis of ovarian carcinoma: polypeptide expression in benign, borderline and malignant tumors.  Int J Cancer. 1997;  73 678-683
  • 29 Alaiya A A, Franzen B, Hagman A, Silfversward C, Moberger B, Linder S, Auer G. Classification of human ovarian tumors using multivariate data analysis of polypeptide expression patterns.  Int J Cancer. 2000;  86 731-736
  • 30 Franzen B, Auer G, Alaiya A A, Eriksson E, Uryu K, Hirano T, Okuzawa K, Kato H, Linder S. Assessment of homogeneity in polypeptide expression in breast carcinomas shows widely variable expression in highly malignant tumors.  Int J Cancer. 1996;  69 408-414
  • 31 Franzen B, Linder S, Alaiya A A, Eriksson E, Uruy K, Hirano T, Okuzawa K, Auer G. Analysis of polypeptide expression in benign and malignant human breast lesions: down-regulation of cytokeratins.  Br J Cancer. 1996;  74 1632-1638
  • 32 Franzen B, Linder S, Okuzawa K, Kato H, Auer G. Nonenzymatic extraction of cells from clinical tumor material for analysis of gene expression by two-dimensional polyacrylamide gel electrophoresis.  Electrophoresis. 1993;  14 1045-1053
  • 33 Bjellqvist B, Ek K, Righetti P G, Gianazza E, Gorg A, Westermeier R, Postel W. Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications.  J Biochem Biophys Methods. 1982;  6 317-339
  • 34 Gorg A, Boguth G, Obermaier C, Posch A, Weiss W. Two-dimensional polyacrylamide gel electrophoresis with immobilized pH gradients in the first dimension (IPG-Dalt): the state of the art and the controversy of vertical versus horizontal systems.  Electrophoresis. 1995;  16 1079-1086
  • 35 Gorg A, Obermaier C, Boguth G, Csordas A, Diaz J J, Madjar J J. Very alkaline immobilized pH gradients for two-dimensional electrophoresis of ribosomal and nuclear proteins.  Electrophoresis. 1997;  18 328-337
  • 36 Gorg A, Postel W, Gunther S. The current state of two-dimensional electrophoresis with immobilized pH gradients.  Electrophoresis. 1988;  9 531-546
  • 37 Tonge R, Shaw J, Middleton B, Rowlinson R, Rayner S, Young J, Pognan F, Hawkins E, Currie I, Davison M. Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology.  Proteomics. 2001;  1 377-396
  • 38 Unlu M, Morgan M E, Minden J S. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts.  Electrophoresis. 1997;  18 2071-2077
  • 39 Conrads T P, Fusaro V A, Ross S, Johann D, Rajapakse V, Hitt B A, Steinberg S M, Kohn E C, Fishman D A, Whitely G, Barrett J C, Liotta L A, Petricoin 3rd  E F, Veenstra T D. High-resolution serum proteomic features for ovarian cancer detection.  Endocr Relat Cancer. 2004;  11 163-178
  • 40 Habermann J K, Roblick U J, Luke B T, Prieto D A, Finlay W J, Podust V N, Roman J M, Oevermann E, Schiedeck T, Homann N, Duchrow M, Conrads T P, Veenstra T D, Burt S K, Bruch H P, Auer G, Ried T. Increased serum levels of complement C3a anaphylatoxin indicate the presence of colorectal tumors.  Gastroenterology. 2006;  131 1020-1029 , quiz 1284
  • 41 Li J, Zhang Z, Rosenzweig J, Wang Y Y, Chan D W. Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer.  Clin Chem. 2002;  48 1296-1304
  • 42 Ornstein D K, Rayford W, Fusaro V A, Conrads T P, Ross S J, Hitt B A, Wiggins W W, Veenstra T D, Liotta L A, Petricoin 3rd  E F. Serum proteomic profiling can discriminate prostate cancer from benign prostates in men with total prostate specific antigen levels between 2.5 and 15.0 ng/ml.  J Urol. 2004;  172 (4 Pt 1) 1302-1305
  • 43 Petricoin E F, Ardekani A M, Hitt B A, Levine P J, Fusaro V A, Steinberg S M, Mills G B, Simone C, Fishman D A, Kohn E C, Liotta L A. Use of proteomic patterns in serum to identify ovarian cancer.  Lancet. 2002;  359 572-577
  • 44 Petricoin E F, Ornstein D K, Liotta L A. Clinical proteomics: Applications for prostate cancer biomarker discovery and detection.  Urol Oncol. 2004;  22 322-328
  • 45 Petricoin 3rd  E F, Ornstein D K, Paweletz C P, Ardekani A, Hackett P S, Hitt B A, Velassco A, Trucco C, Wiegand L, Wood K, Simone C B, Levine P J, Linehan W M, Emmert-Buck M R, Steinberg S M, Kohn E C, Liotta L A. Serum proteomic patterns for detection of prostate cancer.  J Natl Cancer Inst. 2002;  94 1576-1578
  • 46 Jungblut P R, Zimny-Arndt U, Zeindl-Eberhart E, Stulik J, Koupilova K, Pleissner K P, Otto A, Muller E C, Sokolowska-Kohler W, Grabher G, Stoffler G. Proteomics in human disease: cancer, heart and infectious diseases.  Electrophoresis. 1999;  20 2100-2110
  • 47 Stulik J, Koupilova K, Osterreicher J, Knizek J, Macela A, Bures J, Jandik P, Langr F, Dedic K, Jungblut P R. Protein abundance alterations in matched sets of macroscopically normal colon mucosa and colorectal carcinoma.  Electrophoresis. 1999;  20 3638-3646
  • 48 Stulik J, Osterreicher J, Koupilova K, Knizek J, Macela A, Bures J, Jandik P, Langr F, Dedic K, Jungblut P R. The analysis of S 100 A 9 and S 100 A 8 expression in matched sets of macroscopically normal colon mucosa and colorectal carcinoma: the S 100 A 9 and S 100 A 8 positive cells underlie and invade tumor mass.  Electrophoresis. 1999;  20 1047-1054
  • 49 Roseth A G, Kristinsson J, Fagerhol M K, Schjonsby H, Aadland E, Nygaard K, Roald B. Faecal calprotectin: a novel test for the diagnosis of colorectal cancer?.  Scand J Gastroenterol. 1993;  28 1073-1076
  • 50 Roblick U J, Hirschberg D, Habermann J K, Palmberg C, Becker S, Kruger S, Gustafsson M, Bruch H P, Franzen B, Ried T, Bergmann T, Auer G, Jornvall H. Sequential proteome alterations during genesis and progression of colon cancer.  Cell Mol Life Sci. 2004;  61 1246-1255
  • 51 Stulik J, Hernychova L, Porkertova S, Knizek J, Macela A, Bures J, Jandik P, Langridge J I, Jungblut P R. Proteome study of colorectal carcinogenesis.  Electrophoresis. 2001;  22 3019-3025
  • 52 Roblick U J, Lenander C, Bader F G, Zimmermann K, Becker S, Ost A, Bruch H P, Franzen B, Auer G, Habermann J K. Undifferentiated pelvic adenocarcinomas: Diagnostik potential of protein profiling and multivariate analysis.  Am J Surg Path. 2007;  , submitted
  • 53 Nishizuka S, Chen S T, Gwadry F G, Alexander J, Major S M, Scherf U, Reinhold W C, Waltham M, Charboneau L, Young L, Bussey K J, Kim S, Lababidi S, Lee J K, Pittaluga S, Scudiero D A, Sausville E A, Munson P J, Petricoin 3rd  E F, Liotta L A, Hewitt S M, Raffeld M, Weinstein J N. Diagnostic markers that distinguish colon and ovarian adenocarcinomas: identification by genomic, proteomic, and tissue array profiling.  Cancer Res. 2003;  63 5243-5250
  • 54 Friedman D B, Hill S, Keller J W, Merchant N B, Levy S E, Coffey R J, Caprioli R M. Proteome analysis of human colon cancer by two-dimensional difference gel electrophoresis and mass spectrometry.  Proteomics. 2004;  4 793-811
  • 55 Alfonso P, Nunez A, Madoz-Gurpide J, Lombardia L, Sanchez L, Casal J I. Proteomic expression analysis of colorectal cancer by two-dimensional differential gel electrophoresis.  Proteomics. 2005;  5 2602-2611
  • 56 Allal A S, Kahne T, Reverdin A K, Lippert H, Schlegel W, Reymond M A. Radioresistance-related proteins in rectal cancer.  Proteomics. 2004;  4 2261-2269
  • 57 Adam B L, Qu Y, Davis J W, Ward M D, Clements M A, Cazares L H, Semmes O J, Schellhammer P F, Yasui Y, Feng Z, Wright G LJr. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men.  Cancer Res. 2002;  62 3609-3614
  • 58 Becker S, Cazares L H, Watson P, Lynch H, Semmes O J, Drake R R, Laronga C. Surfaced-enhanced laser desorption / ionization time-of-flight (SELDI-TOF) differentiation of serum protein profiles of BRCA-1 and sporadic breast cancer.  Ann Surg Oncol. 2004;  11 907-914
  • 59 Engwegen J Y, Gast M C, Schellens J H, Beijnen J H. Clinical proteomics: searching for better tumour markers with SELDI-TOF mass spectrometry.  Trends Pharmacol Sci. 2006;  27 251-259
  • 60 Heike Y, Hosokawa M, Osumi S, Fujii D, Aogi K, Takigawa N, Ida M, Tajiri H, Eguchi K, Shiwa M, Wakatabe R, Arikuni H, Takaue Y, Takashima S. Identification of serum proteins related to adverse effects induced by docetaxel infusion from protein expression profiles of serum using SELDI ProteinChip system.  Anticancer Res. 2005;  25 1197-1203
  • 61 Mathelin C, Tomasetto C, Rio M C, Chenard M P, Brettes J P, Guyonnet J L. Improvement in intramammary sentinel lymph node removal using a novel prototype hand held probe during breast conservative surgery.  Breast Cancer Res Treat. 2005;  89 305-308
  • 62 Qu Y, Adam B L, Yasui Y, Ward M D, Cazares L H, Schellhammer P F, Feng Z, Semmes O J, Wright Jr  G L. Boosted decision tree analysis of surface-enhanced laser desorption / ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients.  Clin Chem. 2002;  48 1835-1843
  • 63 Yu J K, Chen Y D, Zheng S. An integrated approach to the detection of colorectal cancer utilizing proteomics and bioinformatics.  World J Gastroenterol. 2004;  10 3127-3131
  • 64 Chen R, Rabinovitch P S, Crispin D A, Emond M J, Bronner M P, Brentnall T A. The initiation of colon cancer in a chronic inflammatory setting.  Carcinogenesis. 2005;  26 1513-1519
  • 65 Melle C, Ernst G, Schimmel B, Bleul A, Thieme H, Kaufmann R, Mothes H, Settmacher U, Claussen U, Halbhuber K J, Eggeling F von. Discovery and identification of alpha-defensins as low abundant, tumor-derived serum markers in colorectal cancer.  Gastroenterology. 2005;  129 66-73
  • 66 Albrethsen J, Bogebo R, Gammeltoft S, Olsen J, Winther B, Raskov H. Upregulated expression of human neutrophil peptides 1, 2 and 3 (HNP 1-3) in colon cancer serum and tumours: a biomarker study.  BMC Cancer. 2005;  5 8
  • 67 Ward D G, Suggett N, Cheng Y, Wei W, Johnson H, Billingham L J, Ismail T, Wakelam M J, Johnson P J, Martin A. Identification of serum biomarkers for colon cancer by proteomic analysis.  Br J Cancer. 2006;  94 1898-1905

Dr. Dr. med. U. J. Roblick

Klinik für Chirurgie · Universitätsklinikum Schleswig-Holstein · Campus Lübeck

Ratzeburgerallee 160

23538 Lübeck

Deutschland

Phone: +49/4 51/5 00 63 37

Fax: +49/4 51/5 00 20 69

Email: DrDr.UJRoblick@t-online.de

    >