Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2007(7): 1153-1157
DOI: 10.1055/s-2007-977429
DOI: 10.1055/s-2007-977429
CLUSTER
© Georg Thieme Verlag Stuttgart · New York
DNA-Mediated Enantioselective Carbon-Fluorine Bond Formation
Further Information
Received
27 November 2006
Publication Date:
13 April 2007 (online)
Publication History
Publication Date:
13 April 2007 (online)
Abstract
Enantioselective electrophilic fluorination of β-keto esters with Selectfluor® catalyzed by DNA and a nonchiral ligand-Cu(II) complex is presented. The chirality transfer from DNA to the substrate appears to be caused by the intercalation or groove binding of the substrate-ligand-Cu(II) complex to DNA.
Key words
fluorine - DNA - asymmetric catalysis - copper - halogenation
-
1a
Biomedicinal Aspects of Fluorine Chemistry
Filler R.Kobayashi Y. Elsevier Biomedical Press and Kodansha Ltd; New York, Tokyo: 1982. -
1b
Biomedical Frontiers of Fluorine Chemistry
Ojima I.McCarthy JR.Welch JT. ACS Symposium Series 639, American Chemical Society; Washington DC: 1996. -
1c
Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications
Filler R.Kobayashi Y.Yagupolskii LM. Elsevier; Amsterdam: 1993. - 2
Thayer AM. Chem. Eng. News 2006, 84 (23): 15 - 3
O’Hagan D.Harper DB. Nat. Prod. Rep. 1994, 11: 123 -
4a
Chirality in Drug Design and Development
Indra KR.Mehvar R. Marcel Dekker, Inc.; New York: 2004. -
4b
Triggle DJ. Chirality in Natural and Applied ScienceLough WJ.Wainer IW. Blackwell Publishing; Oxford, UK: 2002. p.109 -
4c
Mansfield P.Henry D.Tonkin A. Clin. Pharmacokin. 2004, 43: 287 -
5a
Enantiocontrolled Synthesis of Fluoro-Organic Compounds: Stereochemical Challenges and Biomedical Targets
Soloshonok VA. Wiley; New York: 1999. -
5b
Asymmetric Fluoroorganic Chemistry: Synthesis, Applications, and Future Directions
Ramachandran PV. ACS Symposium Series 746, American Chemical Society; Washington DC: 2000. -
5c
Chambers RD. Fluorine in Organic Chemistry Blackwell Publishing; Oxford, UK: 2004. -
5d
Kirsch P. Modern Fluoroorganic Chemistry Wiley-VCH; Weinheim: 2004. -
6a
Davis FA.Qi H.Sundarababu G. Enantiocontrolled Synthesis of Fluoro-Organic CompoundsSoloshonok VA. John Wiley and Sons; New York: 1999. p.1-32 -
6b
Muniz K. Angew. Chem. Int. Ed. 2001, 40: 1653 -
6c
Ibrahim H.Togni A. Chem. Commun. 2004, 1147 -
6d
Ma J.-A.Cahard D. Chem. Rev. 2004, 6119 -
6e
France S.Weatherwax A.Lectka T. Eur. J. Org. Chem. 2005, 475 -
6f
Oestreich M. Angew. Chem. Int. Ed. 2005, 44: 2324 -
6g
Pihko PM. Angew. Chem. Int. Ed. 2006, 45: 544 -
6h
Bobbio C.Gouverneur V. Org. Biomol. Chem. 2006, 2065 -
6i
Hamashima Y.Sodeoka M. Synlett 2006, 1467 -
6j
Shibata N. Farumashia 2003, 39: 666 -
6k
Shibata N. J. Synth. Org. Chem., Jpn. 2006, 64: 14 -
7a
Shibata N.Kohno J.Takai K.Ishimaru T.Nakamura S.Toru T.Kanemasa S. Angew. Chem. Int. Ed. 2005, 44: 4204 -
7b
Shibata N.Suzuki E.Takeuchi Y. J. Am. Chem. Soc. 2000, 122: 10728 -
7c
Shibata N.Suzuki E.Asahi T.Shiro M. J. Am. Chem. Soc. 2001, 123: 7001 -
7d
Shibata N.Ishimaru T.Suzuki E.Kirk KL. J. Org. Chem. 2003, 68: 2494 -
7e
Shibata N.Ishimaru T.Nagai T.Kohno J.Toru T. Synlett 2004, 1703 -
7f
Shibata N.Ishimaru T.Nakamura M.Toru T. Synlett 2004, 2509 -
7g
Fukuzumi T.Shibata N.Sugiura M.Nakamura S.Toru T. J. Fluorine Chem. 2006, 127: 548 -
8a
Hintermann L.Togni A. Angew. Chem. Int. Ed. 2000, 39: 4359 -
8b
Cahard D.Audouard C.Plaquevent J.-C.Roques N. Org. Lett. 2000, 2: 3699 -
8c
Greedy B.Paris J.-M.Vidal T.Gouverneur V. Angew. Chem. Int. Ed. 2003, 42: 3291 -
8d
Hamashima Y.Yagi K.Takano H.Tamás L.Sodeoka M. J. Am. Chem. Soc. 2002, 124: 14530 -
8e
Hamashima Y.Suzuki T.Takano H.Shimura Y.Sodeoka M. J. Am. Chem. Soc. 2005, 127: 10164 -
8f
Ma J.-A.Cahard D. Tetrahedron: Asymmetry 2004, 15: 1007 -
8g
Ma J.-A.Cahard D. J. Fluorine Chem. 2004, 125: 1357 -
8h
Enders D.Hüttl MRM. Synlett 2005, 991 -
8i
Marigo M.Fielenbach D.Braunton A.Kjærsgaard A.Jørgensen KA. Angew. Chem. Int. Ed. 2005, 44: 3703 -
8j
Steiner DD.Mase N.Barbas CF. Angew. Chem. Int. Ed. 2005, 44: 3706 -
8k
Beeson TD.MacMillan DWC. J. Am. Chem. Soc. 2005, 127: 8826 -
9a
O’Hagan D.Schaffrath C.Cobb SL.Hamilton JTG.Murphy CD. Nature (London) 2002, 416: 279 -
9b
Dong C.Huang F.Deng H.Schaffrath C.Spencer JB.O’Hagan D.Naismith JH. Nature (London) 2004, 427: 561 - 10
Thayer AM. Chem. Eng. News 2006, 84 (33): 15 -
11a
Mamidi RR.Shibata N.Kondo Y.Nakamura S.Toru T. Angew. Chem. Int. Ed. 2006, 45: 8163 -
11b
Fukuzumi T.Shibata N.Sugiura M.Yasui H.Nakamura S.Toru T. Angew. Chem. Int. Ed. 2006, 45: 4973 -
11c
Shibata N.Matsunaga M.Fukuzumi T.Nakamura S.Toru T. J. Am. Chem. Soc. 2005, 127: 1374 -
11d
Shibata N.Matsunaga M.Nakagawa M.Fukuzumi T.Nakamura S.Toru T. Synlett 2005, 1699 -
11e
Shibata N.Tarui T.Doi Y.Kirk KL. Angew. Chem. Int. Ed. 2001, 40: 4461 -
12a
Sinden RS. DNA Structure and Function Academic Press; New York: 1994. -
12b
Gray DM.Ratliff RL.Vaughan MR. Methods Enzymol. 1992, 211: 389 -
12c
Andrushchenko V.Tsankov D.Wieser H. J. Mol. Struct. 2003, 661: 541 -
13a
Silverman SK. Org. Biomol. Chem. 2004, 2: 2701 -
13b
Peracchi A. ChemBioChem. 2005, 6: 1316 -
13c
Lu Y. Chem. Eur. J. 2002, 8: 4589 -
13d
May JP.Ting R.Lermer L.Thomas JM.Roupioz Y.Perrin DM. J. Am. Chem. Soc. 2004, 126: 4145 -
14a
Roelfes G.Feringa BL. Angew. Chem. Int. Ed. 2005, 44: 3230 -
14b
Roelfes G.Boersma AJ.Feringa BL. Chem. Commun. 2006, 635 -
14c
King AG. J. Chem. Educ. 2006, 83: 13 - 15
Tanaka K.Okahata Y. J. Am. Chem. Soc. 1996, 118: 10679 - 16
Navarro M.Cisneros-Fajardo EJ.Sierralta A.Fernández-Mestre M.Silva P.Arrieche D.Marchán E. J. Biol. Inorg. Chem. 2003, 8: 401 -
18a
Evans DA.Johnson JS.Burgey CS.Campos CR. Tetrahedron Lett. 1999, 40: 2879 -
18b
Evans DA.Johnson JS.Olhava EJ. J. Am. Chem. Soc. 2000, 122: 1635 -
18c
Thorhauge J.Roberson M.Hazell RG.Jørgensen KA. Chem. Eur. J. 2002, 8: 1888 - All buffer solutions were prepared according to the literature. See:
-
19a
Good NE.Winget GD.Winter W.Connolly TN.Izawa S.Singh RMM. Biochemistry 1966, 5: 467 -
19b
Ferguson WJ.Braunschweiger KI.Braunschweiger WR.Smith JR.McCormick JJ.Wasmann CC.Jarvis NP.Bell DH.Good NE. Anal. Biochem. 1980, 104: 300
References and Notes
Both st-DNA and calf thymus DNA are too large to be discussed in detail the transition-state structure of the immediate. Experiments using synthetic, structurally well-defined DNAs are now under investigations to confirm the actual transition-state structure.