Subscribe to RSS
DOI: 10.1055/s-2007-970760
Gallium(III) Chloride Catalyzed Stereoselective Synthesis of E-Configured α,β-Unsaturated Ketones [1]
Publication History
Publication Date:
08 March 2007 (online)
Abstract
A simple and highly stereoselective method has been developed for the synthesis of E-configured α,β-unsaturated ketones using gallium(III) chloride as a novel catalyst. This new procedure offers significant advantages such as high conversions, short reaction times and enhanced E-selectivity together with mild reaction conditions.
Key words
activated alkynes - gallium(III) chloride - ynones - α,β-unsaturated ketones
IICT Communication No. 061125.
- 2
Selectivities in Lewis Acid Promoted Reactions
Schinzer D. Kluwer Academic Publishers; Dordrecht: 1989. - For a review on the synthetic applications of α,β-unsaturated ketones, see:
-
3a
The Chemistry of Enones
Patai S.Rappoport Z. Wiley; Chichester: 1989. p.281 -
3b For recent synthetic applications of α,β-unsaturated ketones, see:
Zhenghong Z.Yilong T.Lixin W.Guofeng Z.Qilin Z.Chuchi T. Synth. Commun. 2004, 1359 - 4 For a recent review of the syntheses of α,β-unsaturated ketones, see:
Foster CE.Mackie PR. In Comprehensive Organic Functional Group Transformations II Vol. 3:Katritzky AR.Taylor RJK. Elsevier Ltd; Oxford, UK: 2005. p.215 -
5a
Mulzer J.Sieg A.Brucher C.Müller D.Martin HJ. Synlett 2005, 685 -
5b
Sano S.Yokoyama K.Shiro M.Nagao Y. Chem. Pharm. Bull. 2002, 50: 706 -
5c
Snider BB.Shi B. Tetrahedron Lett. 2001, 42: 9123 -
5d
Maryanoff BE.Reitz AB. Chem. Rev. 1989, 89: 863 -
6a
Shibuya M.Ito S.Takahashi M.Iwabuchi Y. Org. Lett. 2004, 6: 4303 -
6b
Jurado-Gonzalez M.Sullivan AC.Wilson JR. Tetrahedron Lett. 2004, 45: 4465 -
6c
Bora U.Chaudhuri MK.Dey D.Kalita D.Kharmawphlang W.Mandal GC. Tetrahedron 2001, 57: 2445 -
7a
Kim JH.Lim HJ.Cheon SH. Tetrahedron 2003, 59: 7501 -
7b
Tachihara T.Kitahara T. Tetrahedron 2003, 59: 1773 -
7c
Clive D.Stephen P. Chem. Commun. 2002, 1940 -
7d
Schwarz I.Braun M. Chem. Eur. J. 1999, 5: 2300 -
7e
Taber DF.Herr RJ.Pack SK.Geremia JM. J. Org. Chem. 1996, 61: 2908 -
7f
Concellón JM.Rodrí H.guez-Solla Méjica C. Tetrahedron 2006, 62: 3292 -
8a
Figadere B.Franck X. In Science of Synthesis Vol. 26:Cossy J. Thieme; Stuttgart: 2004. p.401 -
8b
Hermanson JR.Hershberger JW.Pinhas AR. Organometallics 1995, 14: 5426 -
9a
Xi Z.Fan H.-T.Mito S.Takahashi T. J. Organomet. Chem. 2003, 682: 108 -
9b
Deshong P.Sidler DR. Tetrahedron Lett. 1987, 28: 2233 - 10
Matsuo J.-I.Kobayashi S. Chemtracts 2000, 13: 431 -
11a
Chatani N.Kotsuma HT.Murai S. J. Am. Chem. Soc. 2002, 124: 10294 -
11b
Inoue H.Chatani N.Murai S. J. Org. Chem. 2002, 67: 1414 -
11c
Yamaguchi M.Tsukagoshi T.Arisawa M. J. Am. Chem. Soc. 1999, 121: 4074 -
11d
Asao N.Asano T.Ohishi T.Yamamoto Y. J. Am. Chem. Soc. 2000, 122: 4817 -
12a
Viswanathan GS.Wang M.Li C.-J. Angew. Chem. Int. Ed. 2002, 41: 2138 -
12b
Viswanathan GS.Li C.-J. Synlett 2002, 1553 -
12c
Viswanathan GS.Li C.-J. Tetrahedron Lett. 2002, 43: 1613 -
13a
Yadav JS.Reddy BVS.Eeswaraiah B.Gupta MK.Biswas SK. Tetrahedron Lett. 2005, 46: 1161 -
13b
Yadav JS.Reddy BVS.Padmavani B.Gupta MK. Tetrahedron Lett. 2004, 45: 7577
References and Notes
IICT Communication No. 061125.
14
General Procedure.
To the reaction mixture containing substrate 1 (1.0 mmol), CH2Cl2 (10 mL) and alkynone 2 (1.5 mmol) was added a catalytic amount of GaCl3 (0.1 mmol). The resulting mixture was stirred at r.t. for the appropriate time (Table
[1]
). After completion of the reaction as indicated by TLC, EtOAc (20 mL) and H2O (10 mL) were added to the reaction mixture and further stirred at r.t. for additional 10 min. Then, the EtOAc layer was separated and aqueous phase was extracted again with EtOAc (2 × 10 mL). The combined extracts were washed with brine, dried over anhyd Na2SO4 and concentrated in vacuo. The resulting crude product was purified by column chromatography on silica gel (Merck, 60-120 mesh, EtOAc-hexane, 2:8) to afford a pure product.
Spectral Data for Selected Products:
Compound 3a: IR (KBr): νmax = 2924, 2856, 1732, 1556, 1458, 1337, 1234, 1172, 1103, 768, 744, 588 cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.40 (d, J = 16.4 Hz, 1 H), 7.25 (s, 1 H), 7.12-7.05 (m, 1 H), 6.83 (d, J = 8.6 Hz, 1 H), 6.56 (d, J = 16.4 Hz, 1 H), 3.91 (s, 6 H), 2.34 (s, 3 H). MS (EI): m/z (%) = 206 (75) [M+], 191 (100), 163 (15), 149 (18), 107 (20), 77 (18), 43 (70).
Compound 3b: IR (KBr): νmax = 3414, 3136, 2925, 1732, 1629, 1591, 1512, 1412, 1364, 1258, 1115, 1008, 962, 829, 711, 539 cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.41-7.24 (m, 3 H), 6.76 (d, J = 8.3 Hz, 1 H), 6.58 (d, J = 15.8 Hz, 1 H), 5.28 (s, 1 H), 2.38 (s, 3 H), 2.27 (s, 3 H). MS (EI): m/z (%) = 176 (38) [M+], 161 (100), 149 (12), 141 (8), 133 (35), 105 (12), 79 (7), 77 (15), 55 (10), 43 (50).
Compound 3g: IR (KBr): νmax = 3414, 3131, 2929, 1730, 1625, 1512, 1412, 1362, 960 cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.43 (d, J = 16.0 Hz, 1 H), 7.30-7.22 (m, 2 H), 6.74 (d, J = 8.3 Hz, 1 H), 6.55 (d, J = 16.0 Hz, 1 H), 5.78 (s, 1 H), 2.60 (t, J = 7.3 Hz, 2 H), 2.58 (s, 3 H), 1.71-1.62 (m, 2 H), 1.37-1.28 (m, 4 H), 0.91 (t, J = 6.7 Hz, 3 H). MS (EI): m/z (%) = 232 (5) [M+], 176 (25), 161 (100), 133 (25), 105 (10), 77 (30), 43 (60).
Compound 3l: IR (KBr): νmax = 3124, 3002, 2922, 2853, 1663, 1612, 1552, 1474, 1425, 1359, 1254, 1202, 1107, 969, 748, 585 cm-1. 1H NMR (200 MHz, CDCl3): δ = 7.46 (d, J = 1.5 Hz, 1 H), 7.23 (d, J = 15.6 Hz, 1 H), 6.63-6.44 (m, 3 H), 2.30 (s, 3 H). ESI-MS: m/z = 157.1 [M + Na]+, 134.9 [M]+, 121.