References and Notes
-
1a
Momose D.
Yamada Y.
Tetrahedron Lett.
1983,
24:
2669
-
1b
Ueda Y.
Maynard SC.
Tetrahedron Lett.
1988,
29:
5197
-
1c
Konopelski JP.
Boehler MA.
Tarasow TM.
J. Org. Chem.
1989,
54:
4966
-
1d
Venturello C.
D’Aloisio R.
Synthesis
1985,
33
-
1e
Righi G.
Bonini C.
Recent Res. Dev. Org. Chem.
1999,
3:
343
-
1f
Righi G.
Chionne A.
D’Achille R.
Bonini C.
Tetrahedron: Asymmetry
1997,
8:
903
-
1g
Ciaccio JA.
Heller E.
Talbot A.
Synlett
1991,
248
-
1h
Overman LE.
Thompson AS.
J. Am. Chem. Soc.
1988,
110:
2248
-
1i
Bird PR.
Chadha JS.
Tetrahedron Lett.
1966,
38:
4541
-
1j
Martin JD.
Palazon JM.
Perez C.
Ravelo JL.
Pure Appl. Chem.
1986,
58:
395
-
1k
Martin JD.
Perez C.
Ravelo JL.
J. Am. Chem. Soc.
1986,
108:
7801
- 2
Stamatov SD.
Stawinski J.
Tetrahedron Lett.
2006,
47:
2543
- 3
de Haas GH.
van Deenen LLM.
Recl. Trav. Chim. Pays-Bas
1961,
80:
951
- 4
Boguslavskaya LS.
Russ. Chem. Rev.
1972,
41:
740
-
5a
Azzena F.
Calvani F.
Crotti P.
Gardelli C.
Macchia F.
Pineschi M.
Tetrahedron
1995,
51:
10601
-
5b
Bajwa JS.
Anderson RC.
Tetrahedron Lett.
1991,
32:
3021
-
5c
Righi G.
Pescatore G.
Bonadies F.
Bonini C.
Tetrahedron
2001,
57:
5649
-
5d
Kotsuki H.
Shimanouchi T.
Ohshima R.
Fujiwara S.
Tetrahedron
1998,
54:
2709
- 6
Bartas-Yacoubou J.-M.
Maduike N.
Kyere S.
Doan L.
Whalen DL.
Tetrahedron Lett.
2002,
43:
3781
-
7a
Onaka M.
Sugita K.
Takeuchi H.
Izumi Y.
J. Chem. Soc., Chem. Commun.
1988,
1173
-
7b
Chini M.
Crotti P.
Gardelli C.
Macchia F.
Tetrahedron
1992,
48:
3805
-
8a
Gao L.-X.
Murai A.
Chem. Lett.
1989,
357
-
8b
Gao L.-X.
Murai A.
Chem. Lett.
1991,
1503
-
9a
Konaklieva MI.
Dahl ML.
Turos E.
Tetrahedron Lett.
1992,
33:
7093
-
9b
Sharghi H.
Eskandari MM.
Tetrahedron
2003,
59:
8509
-
9c
Sharghi H.
Eskandari MM.
Ghavami R.
J. Mol. Catal. A: Chem.
2004,
215:
55
-
9d
Sharghi H.
Eskandari MM.
Synthesis
2002,
1519
- 10
Bonini C.
Righi G.
Synthesis
1994,
225
-
11a
Soroka M.
Goldeman W.
Malysa P.
Stochaj M.
Synthesis
2003,
2341
-
11b
Solladie-Cavallo A.
Lupattelli P.
Marsol C.
Isarno T.
Bonini C.
Caruso L.
Maiorella A.
Eur. J. Org. Chem.
2002,
1439
-
12a
Sabitha G.
Babu RS.
Rajkumar M.
Reddy CS.
Yadav JS.
Tetrahedron Lett.
2001,
42:
3955
-
12b
Kwon DW.
Cho MS.
Kim YH.
Synlett
2003,
959
-
13a
Tamami B.
Mahdavi H.
React. Funct. Polym.
2002,
51:
7
-
13b
Niknam K.
Nasehi T.
Tetrahedron
2002,
58:
10259
-
13c
Hara S.
Hoshio T.
Kameoka M.
Sawaguchi M.
Fukuhara T.
Yoneda N.
Tetrahedron
1999,
55:
4947
-
13d
Sharghi H.
Naeimi H.
Synlett
1998,
1343
- 14
Leung W.-H.
Wong TKT.
Tran JCH.
Yeung L.-L.
Synlett
2000,
677
-
15a
Kricheldorf HR.
Morber G.
Regel W.
Synthesis
1981,
383
-
15b
Andrews GC.
Crawford TC.
Contillo LG.
Tetrahedron Lett.
1981,
22:
3803
-
15c
Detty MR.
Seidler MD.
Tetrahedron Lett.
1982,
23:
2543
-
15d
Iqbal J.
Amin Khan M.
Ahmad S.
Synth. Commun.
1989,
19:
641
- 16
Dodd GH.
Golding BT.
Ioannou PV.
J. Chem. Soc., Chem. Commun.
1975,
249
-
17a
Lalonde M.
Chan TH.
Synthesis
1985,
817
-
17b
Zhang W.
Robins MJ.
Tetrahedron Lett.
1992,
33:
1177
-
17c
Bajwa JS.
Vivelo J.
Slade J.
Repic O.
Blacklock T.
Tetrahedron Lett.
2000,
41:
6021
-
18a
Paltauf F.
Hermetter A.
Prog. Lipid Res.
1994,
33:
239
-
18b
Serdarevich B.
J. Am. Oil Chem. Soc.
1967,
44:
381
-
18c
Sjursnes BJ.
Anthonsen B.
Biocatalysis
1994,
9:
285
- 19
Ros A.
Magriz A.
Dietrich H.
Fernandez R.
Alvarez E.
Lassaletta JM.
Org. Lett.
2006,
8:
127
-
20a
Stamatov SD.
Stawinski J.
Tetrahedron Lett.
2002,
43:
1759
-
21a
Ganem B.
Small VR.
J. Org. Chem.
1974,
39:
3728
-
21b
Danishefsky SJ.
Mantlo N.
J. Am. Chem. Soc.
1988,
110:
8129
- 22
Fuchs E.-F.
Lehmann J.
Chem. Ber.
1974,
107:
721
- 23
Kim S.
Lee WJ.
Synth. Commun.
1986,
16:
659
- 24
Oriyama T.
Oda M.
Gono J.
Koga G.
Tetrahedron Lett.
1994,
35:
2027
- 25
Stamatov SD.
Stawinski J.
Synlett
2005,
2587
26
Typical Procedure for the Conversion of the Silyl Ethers 1-4 into the Corresponding Trifluoroacetate Derivatives 5-8 (Step A)
To a solution of silyl ether 1-4 (1.00 mmol) and tetra-n-butylammonium halide (2.00 mmol) in alcohol-free CH3Cl (5.0 mL), TFAA (0.278 mL, 2.00 mmol) was added and the reaction system was kept under argon at r.t. for 4-5 h. CH3Cl and volatile reaction components were evaporated in vacuo, the residue was taken in toluene (5.0 mL) and passed through a pad of silica gel (ca. 5 g) prepared in the same solvent. The support was washed with toluene (ca. 100 mL), fractions containing the target compounds were combined, the eluent was removed under reduced pressure, and the residue was kept under high vacuum at r.t. for 2-3 h to afford trifluoro-acetate 5-8 in >90% yields (purity >99% by 1H NMR).
1-Oleoyl-2-trifluoroacetyl-3-chloro-sn-glycerol (5): obtained from 1 (0.447 g, 1.00 mmol) and Bu4NCl (0.556 g, 2.00 mmol) for 5 h. Yield 0.429 g (91%, colorless oil); R
f
= 0.66 (pentane-toluene-EtOAc, 40:50:10); [α]D
20 +0.28 (c 9.65, CHCl3). Anal. Calcd (%) for C23H38ClF3O4 (470.99): C, 58.65; H, 8.13; Cl, 7.53. Found: C, 58.61; H, 8.10; Cl, 7.53%.
1-Oleoyl-2-trifluoroacetyl-3-bromo-sn-glycerol (6): obtained from 2 (0.492 g, 1.00 mmol) and Bu4NBr (0.645 g, 2.00 mmol) for 4 h. Yield 0.490 g (95%, colorless oil); R
f
= 0.69 (pentane-toluene-EtOAc, 40:50:10); [α]D
20 +3.47 (c 8.05, CHCl3). Anal. Calcd (%) for C23H38BrF3O4 (515.44): C, 53.59; H, 7.43; Br, 15.50. Found: C, 53.62; H, 7.37; Br, 15.55.
1-Oleoyl-2-trifluoroacetyl-3-iodo-sn-glycerol (7): obtained from 3 (0.539 g, 1.00 mmol) and Bu4NI (0.739 g, 2.00 mmol) for 4 h. Yield 0.529 g (94%, colorless oil); R
f
= 0.70 (pentane-toluene-EtOAc, 40:50:10); [α]D
20 +6.40 (c 10.01, CHCl3). Anal. Calcd (%) for C23H38IF3O4 (562.44): C, 49.11; H, 6.81; I, 22.56%. Found: C, 49.10; H, 6.80; I, 22.59.
1-Benzoyl-2-trifluoroacetyl-3-bromo-rac-glycerol (8): obtained from 4 (0.331 g, 1.00 mmol) and Bu4NBr (0.645 g, 2.00 mmol) for 4 h. Yield 0.334 g (94%, colorless oil); R
f
= 0.59 (pentane-toluene-EtOAc, 40:50:10). Anal. Calcd (%) for C12H10BrF3O4 (355.10): C, 40.59; H, 2.84; Br, 22.50. Found: C, 40.57; H, 2.80; Br, 22.50.
27
Typical Procedure for the Conversion of Trifluoro-acetates 5-8 into the Corresponding Halohydrin Derivatives 9-12 (Step B)
To a solution of trifluoroacetyl halohydrin 5-8 (1.00 mmol) in pentane-CH2Cl2 (3:1, v/v, 5.0 mL), a mixture of pyridine (0.8 mL, 10 mmol) and MeOH (10.1 mL, 250 mmol) in the same solvents (5.0 mL) was added at 0 °C and the reaction system was left at r.t. for 20 min. Solvents were evaporated under reduced pressure (bath temp. 50 °C) and the residue was kept under high vacuum at r.t. for 2-3 h to afford the deprotected haloalkanols 9-12 practically quantitatively (purity >99% by 1H NMR).
1-Oleoyl-3-chloro-sn-glycerol (9): obtained from 5 (0.471 g, 1.00 mmol). Yield 0.375 g (100%, colorless oil); R
f
= 0.32 (pentane-toluene-EtOAc, 40:50:10); [α]D
20 +3.00 (c 5.66, CHCl3). Anal. Calcd (%) for C21H39ClO3 (374.98): C, 67.26; H, 10.48; Cl, 9.45. Found: C, 67.30; H, 10.42; Cl, 9.42.
1-Oleoyl-3-bromo-sn-glycerol (10): obtained from 6 (0.515 g, 1.00 mmol). Yield 0.418 g (100%, colorless oil); R
f
= 0.33 (pentane-toluene-EtOAc, 40:50:10); [α]D
20 +2.45 (c 8.53, CHCl3). Anal. Calcd (%) for C21H39BrO3 (419.44): C, 60.13; H, 9.37; Br, 19.05. Found: C, 60.13; H, 9.42; Br, 19.10.
1-Oleoyl-3-iodo-sn-glycerol (11): obtained from 7 (0.562 g, 1.00 mmol). Yield 0.466 g (100%, white solid); R
f
= 0.36 (pentane-toluene-EtOAc, 40:50:10); [α]D
20 +2.39 (c 8.37, CHCl3); mp 33.0-33.6 °C; lit.
[3]
[α]D
20 +1.9 (c 10, CHCl3); mp 33.4 °C. Anal. Calcd (%) for C21H39IO3 (466.44): C, 54.07; H, 8.43; I, 27.21. Found: C, 54.15; H, 8.40; I, 27.27.
1-Benzoyl-3-bromo-rac-glycerol (12): obtained from 8 (0.355 g, 1.00 mmol). Yield 0.259 g (100%, colorless oil); R
f
= 0.32 (pentane-toluene-EtOAc, 40:50:10). Anal. Calcd (%) for C10H11BrO3 (259.10): C, 46.36; H, 4.28; Br, 30.84. Found: C, 46.42; H, 4.24; Br, 30.80.