Plant Biol (Stuttg) 2007; 9(5): 662-671
DOI: 10.1055/s-2007-965440
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Chromate Differentially Affects the Expression of a High-Affinity Sulfate Transporter and Isoforms of Components of the Sulfate Assimilatory Pathway in Zea mays (L.)

M. Schiavon1 , M. Wirtz2 , P. Borsa1 , S. Quaggiotti1 , R. Hell2 , M. Malagoli1
  • 1Department of Agricultural Biotechnologies, University of Padua, Agripolis, 35020 Legnaro (Padua), Italy
  • 2Heidelberg Institute of Plant Sciences, University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
Further Information

Publication History

Received: March 31, 2007

Accepted: May 15, 2007

Publication Date:
13 September 2007 (online)

Abstract

In this study the chromate accumulation and tolerance were investigated in Zea mays L. in relation to sulfur availability since sulfate may interact with chromate for transport into the cells. Chromate inhibited sulfate uptake when supplied to plants for a short-term period, whereas phosphate uptake remained unchanged. Sulfate absorption was also reduced in S-starved (-S) and S-supplied (+S) plants treated for 2 d with 0.2 mM chromate and the concomitant repression of the root high-affinity sulfate root transporter ZmST1;1 transcript accumulation was observed. Conversely, the plasma membrane H+-ATPase Mha2 was unaffected by chromate in +S plants, allowing to exclude a general effect of chromate on the active membrane transport. As observed for sulfate uptake, chromate uptake was enhanced in -S condition and decreased in both +S and -S plants after 2 d of Cr treatment. Chromate reduced the concentration of sulfur and sulfate in +S plants to the basal level of -S plants, and maximum chromium accumulation was recorded in S-deprived plants. Analysis of transcript abundance of genes involved in sulfate assimilation revealed differential regulation by chromate, which was only partly related to sulfur availability and to the levels of thiols. This work shows for the first time that chromate specifically represses sulfate uptake, and such repression occurs without the implication of the candidate regulatory metabolites of the sulfate transport system in plants.

References

  • 1 Aldrich M. V., Gardea-Torresdey J. L., Peralta-Videa J. R., Parsons J. G.. Uptake and reduction of Cr(VI) to Cr(III) by Mesquite (Prosopis spp.): chromate-plant interaction in hydroponics and soil media studied using XAS.  Environmental Science and Technology. (2003);  37 1859-1864
  • 2 Barceló J., Porchenrieder C. H., Ruano A., Gunse B.. Leaf water potential in Cr(VI) treated bean plants (Phaseolus vulgaris L).  Plant Physiology Supplement. (1985);  77 163-174
  • 3 Barceló J., Poschenrieder C.. Chromium in plants. Canali, S., Tittarelli, F., and Sequi, P., eds. Chromium Environmental Issues. Milan; Franco Angeli (1997): 101-129
  • 4 Bolchi A., Petrucco S., Tenca P. L., Foroni C., Ottonello S.. Coordinate modulation of maize sulfate permease and ATP sulfurylase mRNAs in response to variations in sulfur nutritional status: stereospecific down-regulation by L-cysteine.  Plant Molecular Biology. (1999);  39 527-537
  • 5 Bradford M. A.. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of the protein-dye binding.  Analytical Biochemistry. (1976);  72 248-254
  • 6 Buchner P., Stuiver C. E. E., Westerman S., Wirtz M., Hell R., Hawkesford M. J., De Kok L. J.. Regulation of sulfate uptake and expression of sulfate transporter genes in Brassica oleracea as affected by atmospheric H2S and pedospheric sulfate nutrition.  Plant Physiology. (2004);  136 3396-3408
  • 7 Cervantes C., Campos-García J., Devars S., Gutiérrez-Corona F., Loza-Tavera H., Torres-Guzmá J. C., Moreno-Sánchez R.. Interaction of chromium with microorganisms and plants.  FEMS Microbiology Reviews. (2001);  25 335-347
  • 8 Frias I., Caldeira M. T., Perez-Castineira J. R., Navarro-Avino J. P., Culianez-Macia F. A., Kuppinger O., Stransky H., Pages M., Hager A., Serrano R.. A major isoform of the maize plasma membrane H+-ATPase: characterization and induction by auxin in coleoptiles.  Plant Cell. (1996);  8 1533-1544
  • 9 Gardea-Torresdey J. L., De la Rosa G., Peralta-Videa J. R., Montes M., Cruz-Jimenez G., Cano-Aguilera I.. Differential uptake and transport of trivalent and hexavalent chromium by Tumbleweed (Salsola kali).  Archives of Environmental Contamination and Toxicology. (2005);  48 225-232
  • 10 Hawkesford M. J.. Plant response to sulphur deficiency and the genetic manipulation of the sulfate transporters to improve S-utilization efficiency.  Journal of Experimental Botany. (2000);  51 131-138
  • 11 Hell R., Hillebrand H.. Plant concepts for mineral acquisition and allocation.  Current Opinion in Biotechnology. (2001);  12 161-168
  • 12 Hirai M. Y., Saito K.. Post-genomics approaches for the elucidation of plant adaptive mechanisms to sulphur deficiency.  Journal of Experimental Botany. (2004);  55 1871-1879
  • 13 Hopkins L., Parmar S., Bouranis D. L., Howarth J. R., Hawkesford M. J.. Coordinated expression of sulfate uptake and components of the sulfate assimilatory pathway in maize.  Plant Biology. (2004);  6 408-414
  • 14 Hopkins L., Parmar S., Blaszczyk A., Hesse H., Hoefgen R., Hawkesford M. J.. O-Acetylserine and the regulation of expression of genes encoding components for sulfate uptake and assimilation in potato.  Plant Physiology. (2005);  138 433-440
  • 15 Kaszycki P., Gabry H., Appenroth K. J., Jaglarz A., Sedziwy S., Walczak T., Koloczek H.. Exogenously applied sulphate as a tool to investigate transport and reduction of chromate in the duckweed Spirodela polyrhiza.  Plant, Cell and Environment. (2005);  28 260-268
  • 16 Kim Y. J., Kim J. H., Lee C. E., Mok Y. G., Choi J. S., Shin H. S., Hwanga S.. Expression of yeast transcriptional activator MSN1 promotes accumulation of chromium and sulfur by enhancing sulfate transporter level in plants.  FEBS Letters. (2006);  580 206-210
  • 17 Kleiman I. D., Cogliatti D. H.. Uptake of chromate in sulfate deprived wheat plants.  Environmental Pollution. (1997);  97 131-135
  • 18 Kotas J., Stasicka Z.. Chromium occurrence in the environment and methods of its speciation.  Environmental Pollution. (2000);  107 263-283
  • 19 Lappartient A. G., Touraine B.. Glutathione-mediated regulation of ATP sulfurylase activity, SO4 2- uptake, and oxidative stress response in intact canola roots.  Plant Physiology. (1997);  114 177-183
  • 20 Lindblom S. D., Abdel-Ghany S. E., Hanson B. R., Hwang S., Terry N., Pilon-Smits E. A. H.. Constitutive expression of a high-affinity sulfate transporter in Brassica juncea affects metal tolerance and accumulation.  Journal of Environmental Quality. (2006);  35 726-733
  • 21 Murphy A., Taiz L.. A new vertical mesh transfer technique for metal-tolerance studies in Arabidopsis (ecotypic variation and copper-sensitive mutants).  Plant Physiology. (1995);  108 29-38
  • 22 Nocito F. F., Pirovano L., Cocucci M., Sacchi G. A.. Cadmium induced sulfate uptake in maize roots.  Plant Physiology. (2002);  129 1872-1879
  • 23 Nocito F. F., Lancilli C., Crema B., Fourcoy P., Davidian J.-C., Sacchi G. A.. Heavy metal stress and sulfate uptake in maize roots.  Plant Physiology. (2006);  141 1138-1148
  • 24 Pilon-Smits E. A. H., Pilon M.. Phytoremediation of metals using transgenic plants.  Critical Reviews in Plant Sciences. (2002);  21 439-456
  • 25 Pilon-Smits E. A. H.. Phytoremediation.  Annual Review of Plant Biology. (2005);  56 15-39
  • 26 Quaggiotti S., Abrahamshon C., Malagoli M., Ferrari G.. Physiological and molecular aspects of sulphate uptake in two maize hybrids in response to S-deprivation.  Journal of Plant Physiology. (2003);  160 167-173
  • 27 Raskin I., Salt D. E., Smith R. D.. Phytoremediation.  Plant Molecular Biology. (1998);  49 643-668
  • 28 Sambrook J., Fritsch E. F., Maniatis T.. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor; Cold Spring Harbor Laboratory Press (1989)
  • 29 Sanger F., Nicklen S., Coulson A. R.. DNA sequence with chain-terminating inhibitors.  Proceedings of the National Academy of Sciences of the USA. (1977);  74 5463-5467
  • 30 Santi S., Locci G., Monte R., Pinton R., Varanini Z.. Induction of nitrate uptake in maize roots: expression of a putative high-affinity nitrate transporter and plasma membrane H+-ATPase isoforms.  Journal of Experimental Botany. (2003);  54(389) 1851-1864
  • 31 Schachtman D. P., Reid R. J., Ayling S. M.. Phosphorus uptake by plants: from soil to cell.  Plant Physiology. (1998);  116 447-453
  • 32 Serrano R.. Structure and function of plasma membrane H+-ATPase.  Annual Review in Plant Physiology and Plant Molecular Biology. (1989);  40 61-94
  • 33 Sharma D. C., Sharma C. P., Tripathi R. D.. Phytotoxic lesion of chromium in maize.  Chemosphere. (2003);  51 63-68
  • 34 Shewry P. R., Peterson P. J.. The uptake and transport of chromium by barley seedlings (Hordeum vulgare L.).  Journal of Experimental Botany. (1974);  25 785-797
  • 35 Skeffington R. A., Shewry P. R., Peterson P. J.. Chromium uptake and transport in barley seedlings (Hordeum vulgare L.)  Planta. (1976);  132 209-214
  • 36 Smith I. K., Kendall A. C., Keys A. J., Turner J. C., Lea P. J.. Increased levels of glutathione in a catalase-deficient mutant of barley (Hordeum vulgare L.).  Plant Science Letters. (1984);  37 29-33
  • 37 Smith F. W., Rae A. L., Hawkesford M. J.. Molecular mechanisms of phosphate and sulphate transport in plants.  Biochimica et Biophysica Acta. (2000);  1465 236-245
  • 38 Takahashi H., Yamazaki M., Sasakura N., Watanabe A., Leustek T., De Almeida Engler J., Engler G., Van Montagu M., Saito K.. Regulation of sulfur assimilation in higher plants: a sulfate transporter induced in sulfate starved roots plays a central role in Arabidopsis thaliana.  Proceedings of the National Academy of Sciences of the USA. (1997);  94 11102-11107
  • 39 Vajpayee P., Tripathi R. D., Rai U. N., Ali M. B., Singh S. N.. Chromium (VI) accumulation reduces chorophyll biosynthesis, nitrate reductase activity and protein content in Nynphaea alba L.  Chemosphere. (2000);  41 1075-1082
  • 40 Vauclare P., Kopriva S., Fell D., Suter M., Sticher L., von Ballmoos P., Krahenbühl U., den Camp R. O., Brunold C.. Flux control of sulphate assimilation in Arabidopsis thaliana: adenosine 5′-phosphosulphate reductase is more susceptible than ATP sulphurylase to negative control by thiols.  The Plant Journal. (2002);  31 729-740
  • 41 Vázquez M. D., Poschenrieder C. H., Barceló J.. Chromium (VI) induced structural and ultrastructural changes in bush bean plants (Phaseolus vulgaris L.)  Annals of Botany. (1987);  59 427-438
  • 42 Wirtz M., Droux M., Hell R.. O-acetylserine (thiol)lyase: an enigmatic enzyme of plant cysteine biosynthesis revisited in Arabidopsis thaliana.  Journal of Experimental Botany. (2004);  55 1785-1798
  • 43 Zaccheo P., Cocucci M., Cocucci S.. Effects of Cr on proton extrusion, potassium uptake and transmembrane electric potential in maize root segments.  Plant, Cell and Environment. (1985);  8 721-726
  • 44 Zayed A. M., Lytle C. M., Qian J. H., Terry N.. Chromium accumulation, translocation and chemical speciation in vegetable crops.  Planta. (1998);  206 293-299
  • 45 Zayed A. M., Terry N.. Chromium in the environment: factors affecting biological remediation.  Plant and Soil. (2003);  249 139-156

M. Malagoli

Department of Agricultural Biotechnologies
University of Padua

Agripolis

35020 Legnaro (Padua)

Italy

Email: mario.malagoli@unipd.it

Guest Editor: T. Rausch