Plant Biol (Stuttg) 2007; 9(5): 638-646
DOI: 10.1055/s-2007-965434
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Interaction of Sulfur and Nitrogen Nutrition in Tobacco (Nicotiana tabacum) Plants: Significance of Nitrogen Source and Root Nitrate Reductase

J. Kruse1 , 2 , S. Kopriva1 , 3 , R. Hänsch4 , G.-J. Krauss5 , R.-R. Mendel4 , H. Rennenberg1
  • 1Institute of Forest Botany and Tree Physiology, Chair of Tree Physiology, Georges-Köhler-Allee 053/054, 79110 Freiburg, Germany
  • 2Present address: Forest Science Centre, Water St. 1, 3363 Creswick, Victoria, Australia
  • 3Present address: John Innes Centre, Norwich Research Park, Norwich, NR4 7 UH, UK
  • 4Institute of Plant Biology, Technical University of Braunschweig, Humboldtstraße 1, 38106 Braunschweig, Germany
  • 5Institute of Biochemistry, Div. Ecological and Plant Biochemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, 06120 Halle, Germany
Further Information

Publication History

Received: August 29, 2006

Accepted: April 23, 2007

Publication Date:
13 September 2007 (online)

Abstract

The significance of root nitrate reductase for sulfur assimilation was studied in tobacco (Nicotiana tabacum) plants. For this purpose, uptake, assimilation, and long-distance transport of sulfur were compared between wild-type tobacco and transformants lacking root nitrate reductase, cultivated either with nitrate or with ammonium nitrate. A recently developed empirical model of plant internal nitrogen cycling was adapted to sulfur and applied to characterise whole plant sulfur relations in wild-type tobacco and the transformant. Both transformation and nitrogen nutrition strongly affected sulfur pools and sulfur fluxes. Transformation decreased the rate of sulfate uptake in nitrate-grown plants and root sulfate and total sulfur contents in root biomass, irrespective of N nutrition. Nevertheless, glutathione levels were enhanced in the roots of transformed plants. This may be a consequence of enhanced APR activity in the leaves that also resulted in enhanced organic sulfur content in the leaves of the tranformants. The lack of nitrate reductase in the roots in the transformants caused regulatory changes in sulfur metabolism that resembled those observed under nitrogen deficiency. Nitrate nutrition reduced total sulfur content and all the major fractions analysed in the leaves, but not in the roots, compared to ammonium nitrate supply. The enhanced organic sulfur and glutathione levels in ammonium nitrate-fed plants corresponded well to elevated APR activity. But foliar sulfate contents also increased due to decreased re-allocation of sulfate into the phloem of ammonium nitrate-fed plants. Further studies will elucidate whether this decrease is achieved by downregulation of a specific sulfate transporter in vascular tissues.

References

  • 1 Brunold C., Suter M.. Regulation of sulfate assimilation by nitrogen nutrition in the duckweed Lemna minor L.  Plant Physiology. (1984);  76 579-583
  • 2 Brunold C., Suter M.. Sulphur metabolism. B. Adenosine 5′-phosphosulphate sulphotransferase.  Methods in Plant Biochemistry. (1990);  3 339-343
  • 3 Brunold C., von Ballmoos P., Hesse H., Fell D., Kopriva S.. Interactions between sulfur, nitrogen and carbon metabolism. Davidian, J.-C., De Kok, L. J., Stulen, I., Hawkesford, M. J., Schnug, E., and Rennenberg, H., eds. Sulfur Transport and Assimilation in Plants: Regulation, Interaction, Signaling. Leiden; Backhuys Publ. (2003): 45-56
  • 4 Buchner P., Takahashi H., Hawkesford M. J.. Plant sulphate transporters: co-ordination of uptake, intracellular and long-distance transport.  Journal of Experimental Botany. (2004);  55 1765-1773
  • 5 Foyer C.-H., Lescure J. C., Lefebvre C., Morot G. J. F., Vincentz M., Vaucheret H.. Adaptations and photosynthetic electron transport, carbon assimilation and carbon partitioning in transgenic Nicotiana plumbaginifolia plants to changes in nitrate reductase activity.  Plant Physiology. (1994);  104 171-178
  • 6 Foyer C. H., Rennenberg H.. Regulation of glutathione synthesis and its role in abiotic and biotic stress defence. Brunold, C., Rennenberg, H., De Kok, L. J., Stulen, I., and Davidian, J. C., eds. Sulfur Nutrition and Sulfur Assimilation in Higher Plants: Molecular, Biochemical and Physiological Aspects. Bern; Paul Haupt (2000): 127-153
  • 7 Glass A. D. M., Britto D. T., Kaiser B. N., Kinghorn. J. R., Kronzucker H. J., Kumar A., Okamoto M., Rawat S., Siddiqi M. Y., Unkles S. E., Vidmar J. J.. The regulation of nitrate and ammonium transport systems in plants.  Journal of Experimental Botany. (2002);  53 855-864
  • 8 Gojon A., Dapoigny L., Lejay L., Tillard P., Rufty T. W.. Effects of genetic modifications of nitrate reductase expression on 15NO3 - uptake and reduction in Nicotiana plants.  Plant, Cell and Environment. (1998);  21 43-53
  • 9 Hänsch R., Fessel D. G., Hoffmann C., Hesberg C., Hoffmann G., Walch-Liu P., Engels C., Kruse J., Rennenberg H., Kaiser W. M., Mendel R.-R.. Tobacco plants that lack expression of a functional nitrate reductase in the roots show changes in growth rates and metabolite accumulation.  Journal of Experimental Botany. (2001);  52 1251-1258
  • 10 Hartmann T., Mult M., Suter M., Rennenberg H., Herschbach C.. Leaf age-dependent differences in sulphur assimilation and allocation in poplar (Populus tremula × P. alba) leaves.  Journal of Experimental Botany. (2000);  51 1077-1088
  • 11 Hartmann T., Hönicke P., Wirtz M., Hell R., Rennenberg H., Kopriva S.. Sulfate assimilation in poplars (Populus tremula × P. alba) overexpressing γ-glutamylcysteine synthetase in the cytosol.  Journal of Experimental Botany. (2004);  55 837-845
  • 12 Herschbach C., van der Zalm E., Schneider A., Jouanin L., De Kok L., Rennenberg H.. Regulation of sulphur nutrition in wildtype and transgenic poplar overexpressing γ-glutamylcysteine synthetase in the cytosol as affected by atmospheric H2S.  Plant Physiology. (2000);  124 461-473
  • 13 Kaiser W. M., Huber S. C.. Post-translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers.  Journal of Experimental Botany. (2001);  52 1981-1989
  • 14 Kaiser W. M., Weiner H., Kandlbinder A., Tsai C. B., Rockel. P., Sonoda M., Planchet E.. Modulation of nitrate reductase: some new insights, an unusual case and a potentially important side reaction.  Journal of Experimental Botany. (2002);  53 875-882
  • 15 Kindermann G., Hüve K., Slovik S., Lux H., Rennenberg H.. Is emission of hydrogen sulfide a dominant factor of SO2 detoxification? - A comparison of Norway spruce (Picea abies [L.] Karst., Scots pine (Pinus sylvestris L.) and blue spruce (Picea pungens Engelm.) in the Ore Mountains.  Phyton. (1995);  35 255-267
  • 16 Kopriva S.. Regulation of sulfate assimilation in Arabidopsis and beyond.  Annals of Botany. (2006);  97 479-495
  • 17 Kopriva S., Rennenberg H.. Control of sulphate assimilation and glutathione synthesis: interaction with N and C metabolism.  Journal of Experimental Botany. (2004);  55 1831-1842
  • 18 Koprivova A., Suter M., Op den Camp R., Brunold C., Kopriva S.. Regulation of sulfate assimilation by nitrogen in Arabidopsis.  Plant Physiology. (2000);  122 737-746
  • 19 Kruse J., Hetzger I., Hänsch R., Mendel R.-R., Walch-Liu P., Engels C., Rennenberg H.. Elevated pCO2 favours nitrate reduction in roots of wild type tobacco (Nicotiana tabacum cv. Gat.) and significantly alters N-uptake, ‐transport and ‐allocation in transformed tobacco lacking functional nitrate reductase in the roots.  Journal of Experimental Botany. (2002);  379 2351-2367
  • 20 Kruse J., Hetzger I., Hänsch R., Mendel R.-R., Rennenberg H.. Evaluation of the effects of elevated pCO2 on C- and N-metabolism in wild type and transgenic tobacco exhibiting an altered C/N-balance by metabolite analysis.  Plant Biology. (2003);  5 540-549
  • 21 Leustek T., Marin M. N., Bick J. A., Davies J. P.. Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies.  Annual Review of Plant Physiology and Plant Molecular Biology. (2000);  51 141-165
  • 22 Li J., Schiff A.. Purification and properties of adenosine 5′-phosphosulfate sulfotransferase from Euglena.  Biochemical Journal. (1991);  274 355-360
  • 23 Migge A., Bork C., Hell R., Becker T. W.. Negative regulation of nitrate reductase gene expression by glutamine or asparagines accumulating in leaves of sulfur-deprived tobacco.  Planta. (2000);  211 587-595
  • 24 Müller A. J., Mendel R. R.. Biochemical and somatic cell genetics of nitrate reduction in Nicotiana. Wray, J. L. and Kinghorn, J. L., eds. Molecular and Genetic Aspects of Nitrate Assimilation. Oxford; Oxford University Press (1989): 166-185
  • 25 Ohkama N., Takei K., Sakakibara H., Hayashi H., Yoneyama T., Fujiwara T.. Regulation of sulfur-responsive gene expression by exogenously applied cytokinins in Arabidopsis thaliana.  Plant and Cell Physiology. (2002);  43 1493-1501
  • 26 Prosser I. M., Purves J. V., Saker L. R., Clarkson D. T.. Rapid disruption of nitrogen metabolism and nitrate transport in spinach plants deprived of sulphate.  Journal of Experimental Botany. (2001);  52 113-121
  • 27 Rennenberg H., Schmitz K., Bergmann L.. Long-distance transport of sulfur in Nicotiana tabacum.  Planta,. (1979);  147 57-62
  • 28 Rennenberg H., Schneider S., Weber P.. Analysis of uptake and allocation of nitrogen and sulphur by trees in the field.  Journal of Experimental Botany. (1996);  47 1491-1498
  • 29 Reuveny Z., Dougall D. K., Trinity P. M.. Regulatory coupling of nitrate and sulfate assimilation pathways in cultured tobacco cells.  Proceedings of the National Academy of Sciences of the USA. (1980);  77 6670-6672
  • 30 Scheible W.-R., González-Fontes A., Morcuende R., Lauerer M., Geiger M., Glaab J., Gojon A., Schulze E.-D., Stitt M.. Tobacco mutants with a decreased number of functional nia genes compensate by modifying then diurnal regulation of transcription, post-transcriptional modification and turnover of nitrate reductase.  Planta. (1997 a);  203 304-319
  • 31 Scheible W.-R., Lauerer M., Schulze E.-D., Caboche M., Stitt M.. Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco.  The Plant Journal. (1997 b);  11 671-691
  • 32 Scholander P. F., Hammel H. T., Bradstreet E. D., Hemmingsen E. A.. Sap pressure in vascular plants.  Science. (1965);  148 339-346
  • 33 Schupp R., Glavac V., Rennenberg H.. Thiol composition of xylem sap of beech trees.  Phytochemistry. (1991);  30 1415-1418
  • 34 Schupp R., Rennenberg H.. Diurnal changes in the glutathione concentration of Spruce needles (Picea abies L.).  Plant Science. (1988);  57 113-117
  • 35 Smith I. K.. Regulation of sulfate assimilation in tobacco cells. Effect of nitrogen and sulfur nutrition on sulfate permease and O-acetylserine sulfhydrylase.  Plant Physiology. (1980);  66 877-883
  • 36 Strohm M., Jouanin L., Kunert K. J., Pruvost C., Polle A., Foyer H. C., Rennenberg H.. Regulation of glutathione synthesis in leaves of transgenic poplar (Populus tremula × P. alba) overexpressing glutathione synthetase.  The Plant Journal. (1995);  7 141-145
  • 37 Suter M., Lavanchy P., von Arb C., Brunold C.. Regulation of sulfate assimilation by amino acids in Lemna minor L.  Plant Science. (1986);  44 125-132
  • 38 Takahashi H., Watanabe-Takahashi A., Smith F. W., Blake-Kalff M., Hawkesford M. J., Saito K.. The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana.  The Plant Journal. (2000);  23 171-182
  • 39 Vauclare P., Kopriva S., Fell D., Suter M., Sticher L., von Ballmoos P., Krähenbühl U., Op den Camp R., Brunold C.. Flux control of sulphate assimilation in Arabidopsis thaliana: Adenosine 5′-phosphosulphate reductase is more susceptible to negative control by thiols than ATP sulphurylase.  The Plant Journal. (2002);  31 729-740
  • 40 Walch-Liu P., Neumann G., Bangerth F., Engels C.. Rapid effects of nitrogen form on leaf morphogenesis in tobacco.  Journal of Experimental Botany. (2000);  51 227-237
  • 41 Yang Z., Midmore D. J.. A model for the circadian oscillations in expression and activity of nitrate reductase in higher plants.  Annals of Botany. (2005);  96 1019-1026

H. Rennenberg

Institut für Forstbotanik und Baumphysiologie
Professur für Baumphysiologie
Universität Freiburg

Georges-Köhler-Allee 053/054

79110 Freiburg

Germany

Email: heinz.rennenberg@ctp.uni-freiburg.de

Guest Editor: T. Rausch