Plant Biol (Stuttg) 2007; 9(5): 589-595
DOI: 10.1055/s-2007-965433
Review Article

Georg Thieme Verlag Stuttgart KG · New York

Significance of Plant Sulfite Oxidase

R. Hänsch1 , C. Lang1 , H. Rennenberg2 , R. R. Mendel1
  • 1Department of Plant Biology, Technical University of Braunschweig, Humboldtstraße 1, 38106 Braunschweig, Germany
  • 2Institute of Forest Botany and Tree Physiology, Chair of Tree Physiology, University of Freiburg, Georges-Köhler-Allee 053/054, 79110 Freiburg, Germany
Further Information

Publication History

Received: July 28, 2006

Accepted: April 23, 2007

Publication Date:
13 September 2007 (online)

Abstract

Sulfite oxidizing activities are known since years in animals, microorganisms, and also plants. Among plants, the only enzyme well characterized on molecular and biochemical level is the molybdoenzyme sulfite oxidase (SO). It oxidizes sulfite using molecular oxygen as electron acceptor, leading to the production of sulfate and hydrogen peroxide. The latter reaction product seems to be the reason why plant SO is localized in peroxisomes, because peroxisomal catalase is able to decompose hydrogen peroxide. On the other hand, we have indications for an additional reaction taking place in peroxisomes: sulfite can be nonenzymatically oxidized by hydrogen peroxide. This will promote the detoxification of hydrogen peroxide especially in the case of high amounts of sulfite. Hence we assume that SO could possibly serve as “safety valve” for detoxifying excess amounts of sulfite and protecting the cell from sulfitolysis. Supportive evidence for this assumption comes from experiments where we fumigated transgenic poplar plants overexpressing Arabidopsis SO with SO2 gas. In this paper, we try to explain sulfite oxidation in its co-regulation with sulfate assimilation and summarize other sulfite oxidizing activities described in plants. Finally we discuss the importance of sulfite detoxification in plants.

References

  • 1 Bernt E., Bergmeyer H. U.. Anorganische Peroxide. Bergermeyer, H. U., ed. Methoden der enzymatischen Analyse, Vol. 2, 3rd ed. Weinheim; Verlag Chemie (1974): 2297-2299
  • 2 Bick J. A., Leustek T.. Plant sulfur metabolism - the reduction of sulfate to sulfite.  Current Opinion in Plant Biology. (1998);  1 240-244
  • 3 Buchanan B. B., Gruissem W., Russell J. L.. Biochemistry and Molecular Biology of Plants. Rockville, Maryland; American Society of Plant Physiologists (2000)
  • 4 Calabrese E., Sacco C., Moore G., DiNardi S.. Sulfite oxidase deficiency: a high risk factor in SO2, sulfite, and bisulfite toxicity?.  Medical Hypotheses. (1981);  7 133-145
  • 5 Clegg S. M., Abbatt J. P. D.. Oxidation of SO2 by H2O2 on ice surfaces at 228 K: a sink for SO2 in ice clouds.  Atmospheric Chemistry and Physics Discussions. (2001);  1 77-92
  • 6 Cohen H. J., Betcher-Lange S., Kessler D. L., Rajagopalan K. V.. Hepatic sulfite oxidase. Congruency in mitochondria of prosthetic groups and activity.  Journal of Biological Chemistry. (1972);  247 7759-7766
  • 7 Dittrich A. P., Pfanz H., Heber U.. Oxidation and reduction of sulfite by chloroplasts and formation of sulfite addition compounds.  Plant Physiology. (1992);  98 738-744
  • 8 Droux M.. Sulfur assimilation and the role of sulfur in plant metabolism: a survey.  Photosynthesis Research. (2004);  79 331-348
  • 9 Eilers T., Schwarz G., Brinkmann H., Witt C., Richter T., Nieder J., Koch B., Hille R., Hänsch R., Mendel R. R.. Identification and biochemical characterization of Arabidopsis thaliana sulfite oxidase. A new player in plant sulfur metabolism.  Journal of Biological Chemistry. (2001);  276 46989-46994
  • 10 Enemark J. H., Cosper M. M.. Molybdenum enzymes and sulfur metabolism.  Metal Ions in Biological Systems. (2002);  39 621-654
  • 11 Fromageot P., Vaillant R., Perez-Milan H.. Oxidation of sulfite to sulfate by oat roots.  Biochimica et Biophysica Acta. (1960);  44 77-85
  • 12 Garrett R. M., Johnson J. L., Graf T. N., Feigenbaum A., Rajagopalan K. V.. Human sulfite oxidase R160Q: identification of the mutation in a sulfite oxidase-deficient patient and expression and characterization of the mutant enzyme.  Proceedings of the National Academy of Sciences of the USA. (1998);  95 6394-6398
  • 13 Garsed S. G., Read D. J.. Sulphur dioxide metabolism in soy-bean, Glycine max var. Biloxi. I. The effects of light and dark on the uptake and translocation of 35SO2.  New Phytology. (1977);  78 111-119
  • 14 Hänsch R., Lang C., Riebeseel E., Lindigkeit R., Gessler A., Rennenberg H., Mendel R. R.. Plant sulfite oxidase as novel producer of H2O2: combination of enzyme catalysis with a subsequent non-enzymatic reaction step.  Journal of Biological Chemistry. (2006);  281 6884-6888
  • 15 Hayashi M., Aoki M., Kato A., Kondo M., Nishimura M.. Transport of chimeric proteins that contain a carboxy-terminal targeting signal into plant microbodies.  The Plant Journal. (1996);  10 225-234
  • 16 Heber U., Hüve K.. Action of SO2 on plants and metabolic detoxification of SO2.  International Review of Cytochemistry. (1998);  177 255-286
  • 17 Heimberg M., Fridovich I., Handler P.. The enzymatic oxidation of sulfite.  Journal of Biological Chemistry. (1953);  204 913-926
  • 18 Hell R.. Molecular physiology of plant sulfur metabolism.  Planta. (1997);  202 138-148
  • 19 Hemann C., Hood B. L., Fulton M., Hänsch R., Schwarz G., Mendel R. R., Kirk M. L., Hille R.. Spectroscopic and kinetic studies of Arabidopsis thaliana sulfite oxidase: nature of the redox-active orbital and electronic structure contributions to catalysis.  Journal of the American Chemical Society. (2005);  127 16567-16577
  • 20 Hill G. R., Thomas M. D.. Influence of leaf destruction by sulphur dioxide and by clipping on yield of alfalfa.  Plant Physiology. (1933);  8 223-245
  • 21 Johnson J. L., Coyne K. E., Garrett R. M., Zabot M. T., Dorche C., Kisker C., Rajagopalan K. V.. Isolated sulfite oxidase deficiency: identification of 12 novel SUOX mutations in 10 patients.  Human Mutation. (2002);  20 74
  • 22 Johnson T. L., Olsen L. J.. Building new models for peroxisome biogenesis.  Plant Physiology. (2001);  127 731-739
  • 23 Jolivet P., Bergeron E., Meunier J. C.. Evidence for sulfite oxidase activity in spinach leaves.  Phytochemistry. (1995 a);  40 667-672
  • 24 Jolivet P., Bergeron E., Zimierski A., Meunier J. C.. Metabolism of elemental sulfur and oxidation of sulfite by wheat and spinach chloroplasts.  Phytochemistry. (1995 b);  38 9-14
  • 25 Kaiser G., Martinoia E., Schroppelmeier G., Heber U.. Active-transport of sulfate into the vacuole of plant cells provides halotolerance and can detoxify SO2.  Journal of Plant Physiology. (1989);  133 756-763
  • 26 Kappler U., Dahl C.. Enzymology and molecular biology of prokaryotic sulfite oxidation.  FEMS Microbiology Letters. (2001);  203 1-9
  • 27 Kisker C., Schindelin H., Pacheco A., Wehbi W. A., Garrett R. M., Rajagopalan K. V., Enemark J. H., Rees D. C.. Molecular basis of sulfite oxidase deficiency from the structure of sulfite oxidase.  Cell. (1997);  91 973-983
  • 28 Kruse J., Kopriva S., Hänsch R., Krauss G.-J., Mendel R.-R., Rennenberg H.. Interaction of sulfur and nitrogen nutrition in tobacco (Nicotiana tabacum) plants: significance of nitrogen source and root nitrate reductase.  Plant Biology. (2007);  9 638-646
  • 29 Lang C., Popko J., Wirtz M., Hell R., Herschbach C., Kreuzwieser J., Rennenberg H., Mendel R. R., Hänsch R.. Sulphite oxidase as key enzyme for protecting plants against sulphur dioxide.  Plant, Cell and Environment. (2007);  30 447-455
  • 30 Leplé J. C., Brasileiro A. C. M., Michel M. F., Delmotte F.. Transgenic poplars expression of chimeric genes using four different constructs.  Plant Cell Reports. (1992);  11 137-141
  • 31 Leustek T.. Sulfate metabolism. Somerville, C. R. and Meyerowitz, E. M., eds. The Arabidopsis Book. Rockville; American Society of Plant Biologists (2002)
  • 32 Leustek T., Saito K.. Sulfate transport and assimilation in plants.  Plant Physiology. (1999);  120 637-644
  • 33 Linzon S. N.. Effects of airbone sulfur pollutants on plants. Nriagu, J. O., ed. Sulfur in the Environment, Part II. Ecological Impacts. New York; Wiley (1978): 109-162
  • 34 Matsubayashi Y., Sakagami Y.. Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of Asparagus officinalis L.  Proceedings of the National Academy of Sciences of the USA. (1996);  93 7623-7627
  • 35 Miszalski Z., Ziegler H.. Superoxide dismutase and sulfite oxidation.  Zeitschrift für Naturforschung. (1992);  47c 360-364
  • 36 Moyer D. T., Geo R. H.. Absorption of sulphur dioxide by alfalfa and its relation to leaf injury.  Plant Physiology. (1935);  10 291-307
  • 37 Mullen R. T., Lee M. S., Flynn C. R., Trelease R. N.. Diverse amino acid residues function within the type 1 peroxisomal targeting signal. Implications for the role of accessory residues upstream of the type 1 peroxisomal targeting signal.  Plant Physiology. (1997);  115 881-889
  • 38 Nag S., Saha K., Choudhuri M. A.. A rapid and sensitive assay method for measuring amine oxidase based on hydrogen peroxide-titanium complex formation.  Plant Science. (2000);  157 157-163
  • 39 Nakamura T., Meyer C., Sano H.. Molecular cloning and characterization of plant genes encoding novel peroxisomal molybdoenzymes of the sulphite oxidase family.  Journal of Experimental Botany. (2002);  53 1833-1836
  • 40 Nowak K., Luniak N., Witt C., Wüstefeld Y., Wachter A., Mendel R. R., Hänsch R.. Peroxisomal localization of sulfite oxidase separates it from chloroplast-based sulfur assimilation.  Plant Cell Physiology. (2004);  45 1889-1894
  • 41 Pachmayr F.. Vorkommen und Bestimmungen von Schwefel in Mineralwasser. Dissertation, München. (1960)
  • 42 Peiser G., Yang S. F.. Biochemical and physiological effects of SO2 on nonphotosynthetic processes in plants. Winner, W. E., Mooney, H. A., and Goldstein, R. A., eds. Sulfur Dioxide and Vegetation. Stanford, California; Stanford Univ. Press (1985): 148-161
  • 43 Pfanz H., Dietz K.-J., Weinerth I., Oppmann B.. Detoxification of sulfur dioxide by apoplastic peroxidases. Rennenberg, H., Brunold, C., De Kok, L. J., and Stulen, I., eds. Sulfur Nutrition and Sulfur Assimilation in Higher Plants. The Hague; SPB Academic Publishing (1990): 229-233
  • 44 Pfanz H., Oppmann B.. The possible role of apoplastic peroxidases in detoxifying the air pollutant sulfur dioxide. Lobarzewski, J., Greppin, H., Penel, C., and Gaspar, T., eds. Biochemical, Molecular and Physiological Aspects of Plant Peroxidases. Geneva; University of Geneva (1991): 401-417
  • 45 Rao I. M., Anderson L. E.. Light and stomatal metabolism. II. Effects of sulfite and arsenite on stomatal opening and light modulation of enzymes in epidermis.  Plant Physiology. (1983);  71 456-459
  • 46 Rennenberg H.. The fate of excess sulfur in higher plants.  Annual Review of Plant Physiology. (1984);  35 121-153
  • 47 Rennenberg H., Herschbach C.. Responses of plants to atmospheric sulphur. Yunus, M. and Iqbal, M., eds. Plant Response to Air Pollution. Chichester; John Wiley and Sons (1996): 285-294
  • 48 Rennenberg H., Polle A.. Metabolic consequences of atmospheric sulphur influx into plants. Alscher, R. and Wellburn, A. Plant Responses to the Gaseous Environment. London; Chapman and Hall (1994): 165-181
  • 49 Rennenberg H., Herschbach C., Haberer K., Kopriva S.. Sulfur metabolism in plants: are trees different?.  Plant Biology. (2007);  9 620-637
  • 50 Rost M., Karge E., Klinger W.. What do we measure with luminol-, lucigenin- and penicillin-amplified chemiluminescence? 1. Investigations with hydrogen peroxide and sodium hypochlorite.  Journal of Bioluminescence and Chemiluminescence. (1998);  13 355-363
  • 51 Saito K.. Sulfur assimilatory metabolism. The long and smelling road.  Plant Physiology. (2004);  136 2443-2450
  • 52 Schindelin H., Kisker C., Rajagopalan K. V.. Molybdopterin from molybdenum and tungsten enzymes.  Advances in Protein Chemistry. (2001);  58 47-94
  • 53 Schrader N., Fischer K., Theis K., Mendel R. R., Schwarz G., Kisker C.. The crystal structure of plant sulfite oxidase provides insights into sulfite oxidation in plants and animals.  Structure. (2003);  11 1251-1263
  • 54 Schulte M., von Ballmoos P., Rennenberg H., Herschbach C.. Life-long growth of Quercus ilex L. at natural CO2 springs acclimates sulphur, nitrogen and carbohydrate metabolism of the progeny to elevated pCO2.  Plant, Cell and Environment. (2002);  25 1715-1728
  • 55 Tanaka K., Otsubo T., Kondo N.. Participation of hydrogen peroxide in the inactivation of Calvin cycle SH enzymes in SO2-fumigated spinach leaves.  Plant Cell Physiology. (1982);  23 1009-1018
  • 56 Taylor G.. Populus: Arabidopsis for forestry. Do we need a model tree?.  Annals of Botany. (2002);  90 681-689
  • 57 Thomas M. D., Hendricks R. H., Hill G. R.. Some chemical reactions of sulphur dioxide after absorption by alfalfa and sugar beets.  Plant Physiology. (1944);  19 212-226
  • 58 Van der Kooij T. A. W., de Kok L. J., Haneklaus S., Schnug E.. Uptake and metabolism of sulphur dioxide by Arabidopsis thaliana.  New Phytology. (1997);  135 101-107
  • 59 Veljović-Jovanović S., Oniki T., Takahama U.. Detection of monodehydro ascorbic acid radical in sulfite-treated leaves and mechanism of its formation.  Plant Cell Physiology. (1998);  39 1203-1208
  • 60 Wuebbens M. M., Rajagopalan K. V.. Mechanistic and mutational studies of Escherichia coli molybdopterin synthase clarify the final step of molybdopterin biosynthesis.  Journal of Biological Chemistry. (2003);  278 14523-14532
  • 61 Yu B., Benning C.. Anionic lipids are required for chloroplast structure and function in Arabidopsis.  The Plant Journal. (2003);  36 762-770
  • 62 Ziegler I.. Action of sulphite on plant malate dehydrogenase.  Phytochemistry. (1974);  13 2411-2416

R. Hänsch

Department of Plant Biology
Technical University of Braunschweig

Humboldtstraße 1

38106 Braunschweig

Germany

Email: r.haensch@tu-bs.de

Guest Editor: T. Rausch