TumorDiagnostik & Therapie 2007; 28(1): 33-42
DOI: 10.1055/s-2007-962994
Thieme Onkologie aktuell

© Georg Thieme Verlag KG Stuttgart · New York

PET und PET/CT mit 18F-Fluorid in der Diagnostik von Knochenmetastasen

PET and PET/CT with 18F-Fluoride in the Diagnosis of Bone MetastasesB. Schmiedel1 , H. Palmedo1
  • 1Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Bonn
Further Information

Publication History

Publication Date:
21 February 2007 (online)

Zusammenfassung

Die Bestimmung des exakten Tumorstadiums im Rahmen der TNM-Klassifikation ist wichtig, um das optimale therapeutische Vorgehen für den Patienten festlegen zu können. Beim M-Staging ist es unabdingbar Knochenmetastasen nachzuweisen bzw. auszuschließen. Bei Tumoren wie dem Bronchialkarzinom, dem Prostata- und Mammakarzinom, bei denen häufig ossäre Metastasen zu beobachten sind, kommt der Knochenszintigrafie zum Metastasen-Screening eine entscheidende Rolle zu. Von dem Ergebnis der Knochenszintigrafie hängt z. B. ab, ob eine kurative Therapie möglich ist, ob eine operative oder chemotherapeutische Behandlung erfolgen muss. Die PET und PET/CT mit 18F-Natrium-Fluorid sind neue Untersuchungsmethoden zum Nachweis bzw. Ausschluss von ossären Metastasen. Die 18F-Fluorid-PET ermöglicht Schnittbilder mit hoher räumlicher Auflösung, die mit der Knochenszintigrafie nicht erreichbar ist. Die pharmakokinetischen Eigenschaften von 18F-Natrium-Fluorid sind günstig und führen zu einem hohen Tracer-Uptake im Knochen und einer schnellen Ausscheidung, was Aufnahmen hoher Qualität bereits eine Stunde p. i. ermöglicht. Im Vergleich zur planaren Ganzkörperszintigrafie kann die 18F-Fluorid-PET deutlich mehr Knochenmetastasen (vor allem in der Wirbelsäule) nachweisen. Im Vergleich zum Knochen-SPECT lassen sich deutlich weniger zusätzliche Metastasen nachweisen. Dies konnte insbesondere für das Bronchial- und Prostatakarzinom gezeigt werden. Bei einem kleinen Anteil der Patienten wird die 18F-Fluorid-PET trotz negativer Knochenszintigrafie einschl. SPECT Knochenmetastasen nachweisen können. Hingegen, lässt sich die Spezifität der SPECT durch die 18F-Fluorid-PET nicht merklich verbessern. Hier zeigt sich, dass neue Kamera-Systeme wie PET/CT und SPECT/CT aufgrund der CT-Komponente und der exakten anatomischen Lokalisierung der Mehranreicherung die Spezifität deutlich verbessern.

Abstract

The exact tumor stage needs to be determined with the help of the TNM classification before the optimal therapeutic procedure for the patient is proposed. If M-staging is under question bone metastases must be excluded or be proven. Bone scintigraphy plays a major role for bone metastases screening of patients with lung cancer, prostate and breast cancer in whom osseous disease is often present. The result of bone scintigraphy has a significant impact on further therapy e. g. whether curative treatment is possible, whether operative resection or chemotherapy must be performed. PET and PET/CT with 18F sodium fluoride are new imaging modalities for the detection of bone metastases. PET with 18F fluoride allows for cross sectional imaging with high resolution in a way that is not achievable by conventional bone scintigraphy. Pharmacokinetic properties of 18F fluoride are advantageous and lead to high tracer uptake and quick renal clearance. This allows the acquisition of high quality images as early as one hour after the injection. Compared with planar whole body scintigraphy, 18F fluoride is able to detect significantly more bone metastases (especially in the vertebral column). In comparison to bone SPECT, less additional metastatic lesions are detected by bone PET. This could be demonstrated in detail for lung and prostate cancers. In a small group of patients, 18F fluoride will diagnose osseous metastatic disease in spite of a negative planar whole body scintigraphy and a negative bone SPECT. However, specificity of bone SPECT is not markedly improved by 18F fluoride PET. It seems that new camera systems like PET/CT and SPECT/CT can enhance specificity impressively by adding the CT component to exactly localize a tracer accumulation.

Literatur

  • 1 Becker N, Wahrendorf J. Krebsatlas der Bundesrepublik Deutschland 1981 - 1990. Springer, Berlin 1998
  • 2 Schalhorn A. Bronchialkarzinom: Möglichkeiten und Grenzen der Chemotherapie.  Fortschr Med. 1985;  103 309-311
  • 3 Schalhorn A. Bronchialkarzinom: Möglichkeiten und Grenzen der Chemotherapie.  Fortschr Med. 1985;  103 453-456
  • 4 Sobin L H, Wittekind C. TNM classification of malignant tumors. 5th ed. Wiley-Liss, New York 1997
  • 5 Stahel R A, Ginsberg R, Havemann K. et al . Staging and prognostic factors in small cell lung cancer: a consensus report.  Lung Cancer. 1989;  5 119-126
  • 6 Stuschke M, Heilmann H P. Lunge und Mediastinum. In: Strahlentherapie. Scherer E, Sack H (Hrsg). Springer, Berlin 1996
  • 7 Holmes E C. Surgical adjuvant therapy of NSCLC.  J Surg Oncol. 1989;  42 (Suppl 1) 26-33
  • 8 Dosoretz D, Galmarini D, Rubenstein J H. et al . Local control in medically inoperable lung cancer: analysis of its importance in outcome and factors determining the probability of tumor eradication.  Int J Radiat Oncol Biol Phys. 1993;  27 507-516
  • 9 Noordijk E M, Poest van der B, Hermans J, Wever A MJ, Leer J WH. Radiotherapy as an alternative to surgery in elderly patients with resectable lung cancer.  Radiother Oncol. 1988;  13 83-89
  • 10 Sandler H M, Curran W J, Turrisi A T. The influence of tumor size and pre-treatment staging on outcome following radiation therapy alone for stage I NSCLC.  Int J Radiat Oncol Biol Phys. 1990;  10 9-13
  • 11 Bülzebruck H, Danzer B, Hilkemeier G. et al . Metastasierung und Prognose des kleinzelligen Bronchialkarzinoms.  Onkologe. 1998;  4 1039-1047
  • 12 Line D, Deeley T J. The necropsy findings in carcinoma of the bronchus.  Br J Dis Chest. 1971;  65 238
  • 13 Wolf M. Kleinzelliges Bronchialkarzinom: Klinische Präsentation, Diagnostik und prognostische Faktoren.  Onkologe. 1998;  4 1005-1018
  • 14 Hansen H H, Muggia F M. Staging of inoperable patients with bronchogenic carcinoma with special reference to bone marrow and peritoneoscopy.  Cancer. 1972;  30 1395-1401
  • 15 Schalhorn A, Sunder-Plassmann L. Maligne Tumoren der Thorakal- und Mediastinalorgane. Internistische Onkologie. Wilmanns W, Huhn D, Wilms K (Hrsg). Thieme, Stuttgart 2000
  • 16 Bonomi P D, Finkelstein D M, Ruckdeschel J C. et al . Combination chemotherapy vs. single agents followed by combinations chemotherapy in stage IV NSCLC: a study of the eastern cooperative oncology group.  J Clin Oncol. 1989;  7 1602-1613
  • 17 Drings P, Becker H, Bülzebruck H, Manke H G, Tessen H W. Chemotherapie des fortgeschrittenen nichtkleinzelligen Bronchialkarzinoms mit Ifosfamid und Etoposid.  Tumordiagn Ther. 1990;  11 79-84
  • 18 Spiegelman D, Maurer H, Ware J H. Prognostic factors in SCLC: an analysis of 1 521 patients.  J Clin Oncol. 1989;  7 344-354
  • 19 Rosell R, Lopez-Cabrerizo M P, Astudillo J. Preoperative chemotherapy for stage III A NSCLC.  Curr Opin Oncol. 1997;  9 149-155
  • 20 Albain K S, Crowley J J, Leblanc M, Livingston R B. Determinants of improved outcome in SCLC: an analysis of the 2 580 patients southwest oncology group data base.  J Clin Oncol. 1990;  8 1563-1574
  • 21 Manegold C, Bülzebruck H, Drings P, Vogt-Moykopf I. Prognostische Faktoren beim kleinzelligen Bronchialkarzinom.  Onkologe. 1989;  12 240-245
  • 22 Golz R, Störkel S. Anatomie und Pathologie des Prostatakarzinom. In: Prostatakarzinom. Hinkelbein W, Miller K, Wiegel T (Hrsg). Springer, Berlin 1999
  • 23 Statistisches Bundesamt .Gesundtheitswesen. Fachserie 12, Reihe 4. Todesursachen in Deutschland. Wiesbaden 1994
  • 24 Saitoh H, Hida M, Shimbo T. et al . Metastatic patterns of prostatic cancer.  Cancer. 1984;  54 3078-3084
  • 25 De la Monte S M, Moore G W, Hutchins G M. Metastatic behaviour of prostate cancer.  Cancer. 1986;  58 985-993
  • 26 Ravery V, Schmid H P, Toublanc M, Boccon-Gibod L. Is the percentage of cancer in biopsy cores predictive of extracapsular disease in T1-T2 prostate cancer?.  Cancer. 1996;  78 1079-1084
  • 27 Badalament R A, Miller M C, Peller P A. et al . An algorithm for predicting nonorgan confined prostate cancer using the results obtained from sexant core biopsies with prostate specific antigen level.  J Urol. 1996;  156 1375-1380
  • 28 Breul J. et al .Fehler bei der präoperativen Bestimmung des lokalen Tumorstadiums bei der radikalen Prostatektomie. In: Hartung U, Kropp J (Hrsg). Urologische Beckenchirurgie. Springer, Berlin 1991
  • 29 Rorvik J, Halvorsen O J, Servoll E, Haukaas S. Transrectal ultrasonography to assess local extent of prostatic cancer before radical prostatectomy.  Br J Urol. 1994;  73 65-69
  • 30 Partin A. et al . PSA in the staging of localized prostate cancer: influence of tumor differentiation tumor volume and benigne hyperplasia.  J Urol. 1990;  143 747
  • 31 Kleer E, Oesterlin J E. PSA and staging of localized prostate cancer.  Urol Clin North Am. 1993;  20 695-705
  • 32 Catalona W J, Smith D S, Ratliff T L, Basler J W. et al . Measurement of PSA in serum as a screening test for prostate cancer.  N Engl J Med. 1991;  324 1156-1161
  • 33 Wirth M P, Frohmüller H GW. PSA and prostate acid phosphatase in the detection of early prostate cancer and the prediction of regional lymph node metastases.  Eur Urol. 1992;  22 27-32
  • 34 Shreve P D, Grossman H B, Gross M D, Wahl R L. Metastatic prostate cancer: initial findings of PET with F-18 fluoro-D-glucose.  Radiology. 1996;  199 751-756
  • 35 Partin A W, Kattan M W, Subong E N. et al . Combination of PSA, clinical stage, and Gleason Score to predict pathological stage of localized prostate cancer.  JAMA. 1997;  277 1445-1451
  • 36 Klän R, Meier T, Knispel H H, Wegner H E, Miller K. Laparoscopic pelvic lymphadenectomy in prostatic cancer.  Urol Int. 1995;  55 78-83
  • 37 Catalona W J, Smith D J. 5-year tumor recurrence rates after anatomical radical retropubic prostatectomy for prostate cancer.  J Urol. 1994;  152 1837-1842
  • 38 Ohori M, Goag J R, Wheeler T M. et al . Can radical prostatectomy alter the progression of poorly differentiated prostate cancer?.  J Urol. 1994;  152 1843-1849
  • 39 Hanks G E, Lee W R, Haulon M S. et al . Conformal technique dose escalation for prostate cancer.  Int J RadiatOncol Biol Phys. 1996;  35 861-868
  • 40 Zietman A L, Shipley W U. Randomized trials in loco-regionally confined prostate cancer: past present and future.  Semin Radiat Oncol. 1993;  3 210-220
  • 41 Epstein J. et al . Correlation of pathologic findings with progression after radical retropubic prostatectomy.  Cancer. 1993;  71 3586
  • 42 Perez C A, Hanks G E, Leibel S A. et al . Localized carcinoma of the prostate (stages T1, T2 and T3).  Cancer. 1993;  72 3156-3173
  • 43 Chybowski F M, Keller J L, Bergstrahl E J, Oesterling J E. Predicting radionuclide bone scan finding in patients with newly diagnosed untreated prostate cancer.  J Urol. 1991;  145 313-318
  • 44 Andriole G L, Kavoussi L R, Torrence J R. Transrectal ultrasonography in the diagnosis and staging of the carcinoma of the prostate.  J Urol. 1988;  140 758-760
  • 45 Noldus J, Stamey T A. Limitations of serum PSA in predicting peripheral and transition zone cancer volumes as measured by correlation coefficients.  J Urol. 1996;  155 232-237
  • 46 Kelsey J L, Gammon M D. The epidemiology of breast cancer.  Cancer. 1991;  41 146-165
  • 47 Berg J W, Hutter R V. Breast cancer.  Cancer. 1995;  75 257-269
  • 48 Sondik E J. Breast cancer trends. Incidence, mortality and survival.  Cancer. 1994;  74 995-999
  • 49 Possinger K, Große Y. Mammakarzinome und gynäkologische Tumoren. Internistische Onkologie. Wilmanns W, Huhn D, Wilms K (Hrsg). Thieme, Stuttgart 2000
  • 50 Spratt J S, Donegan W L. Cancer of the breast. Saunders, Philadelphia 1979
  • 51 Tabar L, Grad A, Holmberg L H. et al . Reduction in mortality from breast cancer after mass screening with mammography.  Lancet. 1985;  1 829
  • 52 Boag J W, Jaybittle J L, Fowler J R. The number of patinets required in a clinical trial.  Brit J Radiol. 1971;  44 122
  • 53 Smart C R, Myers M H, Gloeckler L A. Implications from SEER data on breast cancer management.  Cancer. 1978;  41 787
  • 54 Koscielny S M, Tubiana M, Le M G. et al . Breast cancer. Relationship between the size of the primary tumor and the probability of metastatic dissemination.  Brit J Cancer. 1984;  49 709
  • 55 Donegan W L. Epidemiology. In: Donegan WL, Spratt JS. Cancer of the breast. Saunders, Philadelphia 1979
  • 56 Foster Jr R S, Lang S P, Constanza M C. et al . Breast self-examination practices and breast cancer stage.  New Engl J Med. 1978;  299 265
  • 57 Andersson I. Mammographic screening and mortality from breast cancer: Malmö mammographic screening trial.  Brit J Med. 1988;  297 943-948
  • 58 Frisell J, Eklund G, Hellström L. et al . Randomized study of mammography screening - preliminary report on mortality in the Stockholm trial.  Breast cancer research and treatment. 1991;  18 49-56
  • 59 Miller A B, Baines C J, To T. et al . Canada national breast screening study.  Can Med Assoc J. 1992;  147 1459-1488
  • 60 Meuret G. Grundlagen des Mammakarzinoms. In: Mammakarzinom. Meuret G (Hrsg). Thieme, Stuttgart 1995
  • 61 Clark G M, Sledge G W, Osborne C K, McGuire W L. Survival from first recurrence: relative importance of prognostic factors in 1 015 breast cancer patients.  J Clin Oncol. 1987;  5 55-61
  • 62 Come S E, Schnipper L E. Myelophtisisanemia and other aspects of bone marrow involvement. In: Harris JR, Hellman S, Henderson IC, Kinne DW. Breast diseases. Lippincott, Philadelphia 1991; 761 - 766
  • 63 Perez D J, Powles T J, Milan J. et al . Detection of breast carcinoma metastases in bone: relative merits of x-rays and skeletal scintigraphy.  Lancet. 1983;  2 613-616
  • 64 Rossing N, Munck O, Nielsen S P. et al . What do early bone scans tell about breast cancer patients?.  Eur J Cancer Clin Oncol. 1982;  18 629-636
  • 65 Kamby C, Bruun Rasmussen B, Kristensen B. Prognostic indicators of metastatic bone disease in human breast cancer.  Cancer. 1991;  68 2045-2050
  • 66 Muss H B. Endocrine therapy for advanced breast cancer: a review.  Breast cancer Res Treat. 1992;  21 15-26
  • 67 Diel I J, Solomayer E F, Costa S D. et al . Reduction in new metastases in breast cancer with adjuvant clodronate treatment.  N Engl J Med. 1998;  339 357-363
  • 68 Conte N, Giannessi P G, Latreille J. et al . Delayed progression of bone metastaseswithb pamidronate therapy in breast cancer patients: a randomized, multicenter phase III trial.  Br J Cancer. 1994;  70 554-558
  • 69 Van Holten-Verzantvoort A TM, Hermans J. et al . Does supportive pamodronate treatment prevent or delay the first manifestation of bone metastases in breast cancer patients?.  Eur J Cancer. 1996;  32 450-454
  • 70 Aberzik W J, Silver B, Henderson I C. et al . The use of radiotherapy for treatment of isolated locoregional recurrence of breast carcinoma after mastectomy.  Cancer. 1986;  58 1214
  • 71 Janjan N A, McNeese M D, Buzdar A U. et al . Management of locoregional recurrent breast cancer.  Cancer. 1986;  58 1552
  • 72 Noguchi S, Miyauchi K, Nishizawa Y. et al . Results of surgical treatment for sternal metastases in breast cancer.  Cancer. 1987;  60 2524-2531
  • 73 Schirrmeister H. et al . Early detection and accurate description of extent of metastatic bone disease in breast cancer with fluoride ion and positron emission tomography.  J Clin Oncol. 1999;  17 2381
  • 74 Gambhir S S, Czernin J, Schwimmer J. et al . A tabulated summary of the FDG-PET literature.  J Nucl Med. 2001;  42 1S-93S
  • 75 Blau M, Nagler W, Bender M A. A new isotope for bone scanning.  J Nucl Med. 1962;  3 332-334
  • 76 Cook G, Fogelman I. The role of positron emission tomography in skeletal disease.  Seminars in Nuclear Medicine. 2001;  1 50-61
  • 77 Hawkins R A, Choi Y, Huang S C. et al . Evaluation of the skeletal kinetics of fluorine-18-fluoride ion with PET.  J Nucl Med. 1992;  33 633-642
  • 78 Hoh C K, Hawkins R A, Dahlbom M. et al . Whole body skeletal imaging with F-18 fluoride ion and PET.  J Comp Assist Tomogr. 1993;  17 34-41
  • 79 McNeil B J. et al . Fluroine-18 bone scintigraphy in children with osteosarcoma or Ewing's sarcoma.  Radiology. 1973;  109 627-631
  • 80 Buck A C. et al . Serial Fluorine-18 bone scans in the follow-up of carcinoma of the prostate.  Br J Urol. 1975;  47 287-294
  • 81 Rosenfield N, Treves S. Osseous and extraosseousuptake of fluorine-18 and techentium-99 m polyphosphate in children with neuroblastoma.  Radiology. 1974;  111 127-133
  • 82 Schirrmeister H, Rentschler M, Kotzerke J. et al . Skeletal imaging with F-18 NaF PET and comparison with planar scintigraphy.  Fortschr Röntgenstr. 1998;  168 451-456
  • 83 Schirrmeister H, Guhlmann C A, Diederichs C G, Träger H, Reske S N. Planar bone imaging vs. F-18 PET in patients with cancer of the prostate, thyroid and lung.  J Nucl Med. 1999;  40 1623-1629
  • 84 Schirrmeister H, Glatting G, Hetzel J, Nussle K, Arslandemir C, Buck A K, Dziuk K, Gabelmann A, Reske S N, Hetzel M. Prospective evaluation of the clinical value of planar bone scans, SPECT, and (18)F-labeled NaF PET in newly diagnosed lung cancer.  J Nucl Med. 2001;  42 1800-1804
  • 85 Palmedo H, Schaible R, Textor J, Ko Y, Grohé C, Mallek D von, Ezziddin S, Reinhardt M J, Biersack H J. PET with 18F Fluoride compared to bone scintigraphy in the diagnosis of bone metastases: results of a prospective study.  J Nucl Med. 2002;  (Suppl) 1150
  • 86 Lonneux M, Borbath I I, Berliere M, Kirkove C, Pauwels S. The Place of Whole-Body PET FDG for the Diagnosis of Distant Recurrence of Breast Cancer.  Clin Positron Imaging. 2000;  3 45-49
  • 87 Ohta M, Tokuda Y, Suzuki Y, Kubota M, Makuuchi H, Tajima T, Nasu S, Suzuki Y, Yasuda S, Shohtsu A. Whole body PET for the evaluation of bony metastases in patients with breast cancer: comparison with 99Tcm-MDP bone scintigraphy.  Nucl Med Commun. 2001;  2 875-879
  • 88 Yang S N, Liang J A, Lin F J, Kao C H, Lin C C, Lee C C. Comparing whole body (18)F-2-deoxyglucose positron emission tomography and technetium-99 m methylene diphosphonate bone scan to detect bone metastases in patients with breast cancer.  J Cancer Res Clin Oncol. 2002;  128 325-328
  • 89 Marom E M, McAdams H P, Erasmus J J, Goodman P C, Culhane D K, Coleman R E, Herndon J E, Patz Jr E F. Staging non-small cell lung cancer with whole-body PET.  Radiology. 1999;  212 803-809
  • 90 Garcia J R, Simo M, Perez G, Soler M, Lopez S, Setoain X, Lomena F. 99 mTc-MDP bone scintigraphy and 18F-FDG positron emission tomography in lung and prostate cancer patients: different affinity between lytic and sclerotic bone metastases.  Eur J Nucl Med Mol Imaging. 2003;  30 1714
  • 91 Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The Detection of Bone Metastases in Patients with High-Risk Prostate Cancer: 99 mTc-MDP Planar Bone Scintigraphy, Single- and Multi-Field-of-View SPECT, 18F-Fluoride PET, and 18F-Fluoride PET/CT.  J Nucl Med. 2006;  47 287-297
  • 92 Buscombe J R, Holloway B, Roche N, Bombardieri E. Position of nuclear medicine modalities in the diagnostic work-up of breast cancer.  Q J Nucl Med Mol Imaging. 2004;  48 109-118
  • 93 Ghanem N, Altehoefer C, Kelly T, Lohrmann C, Winterer J, Schafer O, Bley T A, Moser E, Langer M. Whole-body MRI in comparison to skeletal scintigraphy in detection of skeletal metastases in patients with solid tumors.  In Vivo. 2006;  20 173-182
  • 94 Frat A, Agildere M, Gencoglu A, Cakir B, Akin O, Akcali Z, Aktas A. Value of whole-body turbo short tau inversion recovery magnetic resonance imaging with panoramic table for detecting bone metastases: comparison with 99 mTc-methylene diphosphonate scintigraphy.  J Comput Assist Tomogr. 2006;  30 151-156

Prof. Dr. H. Palmedo

Klinik und Poliklinik für Nuklearmedizin · Universitätsklinikum Bonn

Sigmund-Freud-Str. 25

53105 Bonn

Email: holger.palmedo@ukb.uni-bonn.de

    >