Synlett 2006(20): 3423-3426  
DOI: 10.1055/s-2006-956483
LETTER
© Georg Thieme Verlag Stuttgart · New York

Beneficial Effect of Mukaiyama Reagent on Macrobislactamization Reactions

Lucie Vandromme, David Monchaud, Marie-Paule Teulade-Fichou*
Laboratoire de Chimie des Interactions Moléculaires (CNRS, UPR285), Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France
Fax: +33(1)44271356; e-Mail: mp.teulade-fichou@college-de-france.fr;
Further Information

Publication History

Received 28 September 2006
Publication Date:
08 December 2006 (online)

Abstract

An expeditious two-step procedure was developed to accede to new tetraamide macrocycles. The key step of this diversity-oriented procedure is a highly efficient Mukaiyama salt promoted macrobislactamization. Preliminary mechanistic investigations are also reported.

    References and Notes

  • 1a Schneider HJ. Yatsimirski A. Principles and Methods in Supramolecular Chemistry   Wiley; Somerset: 2000. 
  • 1b Lehn J.-M. Supramolecular Chemistry: Concepts and Perspectives   VCH; Weinheim: 1995. 
  • 2a Chmielewski MJ. Jurczak J. Chem. Eur. J.  2006,  12:  7652 
  • 2b For recent reviews on anion receptor chemistry, see the Coordination Chemistry Review special issue, ‘35 Years of Synthetic Anion Receptor Chemistry 1968-2003’: Gale PA. Coord. Chem. Rev.  2003,  240:  1 
  • 3 Mo Z. Yang W. Gao J. Chen H. Kang J. Synth. Commun.  1999,  29:  2147 
  • 4a Szumna A. Jurczak J. Eur. J. Org. Chem.  2001,  4031 
  • 4b Chmielewski MJ. Jurczak J. Tetrahedron Lett.  2005,  46:  3085 
  • 4c Zielinski T. Kedziorek M. Jurczak J. Tetrahedron Lett.  2005,  46:  6231 
  • 4d Chmielewski MJ. Jurczak J. Chem. Eur. J.  2005,  11:  6080 
  • 5a Sessler JL. Katayev E. Pantos GD. Ustynyuk YA. Chem. Commun.  2004,  1276 
  • 5b Sessler JL. Katayev E. Pantos GD. Scherbakov P. Reshetova MD. Khrustalev VN. Lynch VM. Ustynyuk YA. J. Am. Chem. Soc.  2005,  127:  11442 
  • 7a Dietrich B. Viout P. Lehn J.-M. Macrocyclic Chemistry   VCH; Weinheim: 1993. 
  • 7b Ruggli P. Justus Liebigs Ann. Chem.  1912,  392:  92 
  • 7c Rossa L. Vögtle F. Top. Curr. Chem.  1983,  113:  1 
  • 8 Bald E. Saigo K. Mukaiyama T. Chem. Lett.  1975,  4:  1163 
  • 9 Popaj K. Gugisberg A. Hesse M. Helv. Chim. Acta  2000,  83:  3021 
  • 10a Jones TK. Mills SG. Reamer RA. Askin D. Desmond R. Volante RP. Shinkai I. J. Am. Chem. Soc.  1989,  111:  1157 
  • 10b Roush WR. Coffey DS. Madar DJ. J. Am. Chem. Soc.  1997,  119:  11331 
  • 10c Smith AB. Wan Z. J. Org. Chem.  2000,  65:  3738 
  • 10d Penhoat M. Bohn P. Dupas G. Papamicael C. Marsais F. Levacher V. Tetrahedron: Asymmetry  2006,  17:  281 
  • 11 For the Brown and Okamoto’s electrophilic substituent constants (σp +) determination, see: Brown HC. Okamoto Y. J. Am. Chem. Soc.  1958,  80:  4979 
6

Two-step Synthesis of Tetraaromatic Tetraamide Macrocycles; General Procedure: Step 1: One-Step Synthesis of Diamine 6 and 7
ortho-Phenylene diamine (1.85 mmol, 2.0 equiv), EDCI (1.94 mmol, 2.1 equiv) and HOAt (0.37 mmol, 0.4 equiv) were successively added to a solution of diacid derivative (isophthalic or dipicolinic acid; 0.92 mmol, 1.0 equiv) in DMF (50 mL) under an inert atmosphere. After the addition, the reaction mixture was allowed to stir at r.t. for 16 h. The mixture was concentrated under reduced pressure to a crude oil that was purified by flash column chromatography (silica gel, CH2Cl2-5% MeOH) to afford the expected diamine (6 or 7) as a pale yellow powder, with chemical yields given in the text. Compound 6: R f 0.6 (CH2Cl2-10% MeOH); mp 198 °C. 1H NMR (300 MHz, DMSO-d 6): δ = 9.77 (s, 2 H), 8.59 (s, 1 H), 8.15 (br d, J = 7.8 Hz, 2 H), 7.66 (t, J = 7.7 Hz, 1 H), 7.20 (d, J = 7.8 Hz, 2 H), 6.99 (td, J = 8.2 Hz, J′ = 1.3 Hz, 2 H), 6.80 (dd, J = 8.1 Hz, J′ = 1.2 Hz, 2 H), 6.62 (td, J = 8.2 Hz, J′ = 1.3 Hz, 2 H), 4.94 (br s, 4 H). 13C NMR (75.3 MHz, DMSO-d 6): δ = 165.0, 143.6, 135.2, 131.0, 128.8, 127.7, 127.2, 127.1, 123.5, 116.7, 116.6. Compound 7: R f 0.17 (CH2Cl2-5% MeOH); mp 240 °C. 1H NMR (300 MHz, DMSO-d 6): δ = 10.70 (s, 2 H), 8.18-8.35 (m, 3 H), 7.16 (dd, J = 7.8 Hz, J′ = 1.2 Hz, 2 H), 7.03 (td, J = 8.1 Hz, J′ = 1.5 Hz, 2 H), 6.81 (dd, J = 8.1 Hz, J′ = 1.2 Hz, 2 H), 6.63 (td, J = 7.5 Hz, J′ = 1.2 Hz, 2 H), 5.00 (br s, 4 H). 13C NMR (75.3 MHz, DMSO-d 6): δ = 162.5, 149.3, 144.5, 140.0, 128.0, 127.7, 125.2, 122.7, 116.7, 116.4.
Step 2: Macrobislactamization Reaction for the Synthesis of 1, 2 and 3 Mukaiyama salt (2-chloromethylpyridinium iodide; 0.75 mmol, 2.5 equiv), tri-n-butylamine (1.5 mmol, 5.0 equiv) and the diamine derivative (6 or 7, 0.3 mmol, 1.0 equiv) were successively added to a solution of diacid derivative (isophthalic or dipicolinic acid, 0.30 mmol, 1.0 equiv) in CH2Cl2 (100 mL) under an inert atmosphere. The reaction mixture was stirred at reflux temperature for 16 h. After cooling to r.t., Et2O (200 mL) was added providing a white precipitate that was collected by filtration. The corresponding tetraaromatic tetraamide macrocycles (1, 2 or 3) were obtained as a white powder, with chemical yields given in Table [1] . Compound 1: mp 310 °C. IR (KBr): 3240 (NH), 1648 (CO), 1603 (NH), 1303 (CN), 755 (CH) cm-1. 1H NMR (300 MHz, DMSO-d 6): δ = 10.18 (br s, 4 H), 9.16 (d, J = 5.4 Hz, 2 H), 8.50-8.63 (m, 3 H), 8.38 (d, J = 8.1 Hz, 2 H), 8.20 (d, J = 8.4 Hz, 1 H), 7.52-7.70 (m, 4 H), 7.22-7.40 (m, 4 H). EI-MS: m/z (%) = 477 (67) [M + H+]. Compound 2: mp 304 °C. IR (KBr): 3474 (NH), 3245 (CH), 1685 (CO), 1591 (NH), 1307 (CN), 749 (CH) cm-1. 1H NMR (300 MHz, DMSO-d 6): δ = 10.94 (s, 2 H), 10.17 (s, 2 H), 8.24 (br t, 3 H), 8.00-8.12 (m, 1 H), 7.68 (br d, 2 H), 7.52 (m, 4 H), 7.21 (m, 4 H), 6.75 (m, 1 H). EI-MS: m/z (%) = 479 (100) [M + H+], 496 (8) [M + NH4 +]. Compound 3: mp 196 °C. IR (KBr): 3423 (NH), 3247 (CH), 1677 (CO), 1600 (NH), 1308 (CN), 754 (CH) cm-1. 1H NMR (300 MHz, DMSO-d 6): δ = 11.00 (s, 4 H), 8.40 (d, J = 8.0 Hz, 4 H), 8.30 (t, J = 7.7 Hz, 2 H), 7.82-7.86 (m, 4 H), 7.37-7.41 (m, 4 H). EI-MS: m/z (%) = 479 (30) [M + H+], 496 (28) [M + NH4 +].