Subscribe to RSS
DOI: 10.1055/s-2006-951538
A Mixed Naphthyl-Phenyl Phosphine Ligand Motif for Suzuki, Heck, and Hydrodehalogenation Reactions
Publication History
Publication Date:
25 October 2006 (online)
Abstract
Nap-Phos, representing a new naphthyl-phenyl biaryl-type phosphine ligand class and available by a short synthesis (4 steps, 71% overall yield), effectively catalyzes the Suzuki-Miyaura (including highly hindered cases), hydrodehalogenation, and Heck reactions.
Key words
cross-coupling - Suzuki-Miyaura - homogenous catalysis - Heck reaction - phosphorus ligand - hindered biaryls - dehydrohalogenation
-
1a
Metal-Catalyzed Cross-Coupling Reactions
2nd ed.:
Meijere A.Diederich F. Wiley-VCH; Weinheim: 2004. -
1b
Handbook of Organopalladium Chemistry for Organic Synthesis
Negishi E. Wiley-Interscience; Weinheim: 2002. -
1c For mechanistic aspects, see:
Kozuch S.Amatore C.Jutand A.Shaik S. Organometallics 2005, 24: 2319 - See, for example:
-
2a
King AO.Yasuda N. Top. Organomet. Chem. 2004, 6: 205 -
2b
Rouhi AM. Chem. Eng. News 2004, 82 (Sept. 6): 49 -
2c
Carey JS.Laffan D.Thomson C.Williams MT. Org. Biomol. Chem. 2006, 4: 2337 ; especially p. 2345 - 3 Review:
Wilkinson MJ.van Leeuwen PWNM.Reek JNH. Org. Biomol. Chem. 2005, 3: 2371 - Reviews:
-
4a
Clarke ML.Heydt M. Organometallics 2005, 24: 6475 -
4b
Shimizu H.Nagasaki I.Saito T. Tetrahedron 2005, 61: 5405 -
4c
Valentine DH.Hillhouse JH. Synthesis 2003, 2437 - 5
Hillier AC.Grasa GA.Viciu MS.Lee HM.Yang C.Nolan SP. J. Organomet. Chem. 2002, 653: 69 -
6a For an excellent overview and comprehensive list of references, see:
Barder TE.Walker SD.Martinelli JR.Buchwald SL. J. Am. Chem. Soc. 2005, 127: 4685 - For additional impact of SPhos on Suzuki-Miyaura chemistry, see:
-
6b
Walker SD.Martinelli JR.Buchwald SL. Angew. Chem. Int. Ed. 2004, 43: 1871 -
6c
Barder TE.Buchwald SL. Org. Lett. 2004, 6: 2649 -
6d
Billingsley KL.Anderson KW.Buchwald SL. Angew. Chem. Int. Ed. 2006, 45: 3484 - 7 The significance of an η1-Pd-C(ipso) interaction to the lifetime of the catalyst is being investigated, see ref. 6 and:
Kočovský P.Vyskočil S.Cisařová I.Sejbal J.Tilerová I.Smrčina M.Lloyd-Jones GC.Stephen SC.Butts CP.Murray M.Langer V. J. Am. Chem. Soc. 1999, 121: 7714 -
8a For an outstanding critical review on the Heck and Suzuki reactions focusing on the active species, which presents a detailed analysis of P-ligands, see:
Phan NTS.Van Der Sluys M.Jones CW. Adv. Synth. Catal. 2006, 348: 609 -
8b For a review on hydrophilic P-based ligands, see:
Shaughnessy KH. Eur. J. Chem. 2006, 1827 - 9
Yin J.Buchwald SL. J. Am. Chem. Soc. 2000, 122: 12051 - For a practical synthesis of biphenyl phosphine ligands using a Grignard-benzyne reaction, see:
-
10a
Tomori H.Fox JM.Buchwald SL. J. Org. Chem. 2000, 65: 5334 -
10b For recent work, see:
Baillie C.Chen W.Xiao J. Tetrahedron Lett. 2001, 42: 9085 ; and references cited therein - 11
Schenck HV.Nilsson P.Andappan MS.Larhed M. J. Org. Chem. 2004, 69: 5212 - 12
Villemin D.Racha F. Tetrahedron Lett. 1986, 27: 1789 - For similar nucleophilic aromatic substitutions driven by coordination effects, see:
-
14a
Meyers AI.Hummelsbach RJ. J. Am. Chem. Soc. 1985, 107: 682 -
14b Review:
Meyers AI.Nelson TD.Moorlag H.Rawson DJ.Merier A. Tetrahedron 2004, 60: 4459 -
14c For recent work, see:
Qiu L.Kwong FY.Wu J.Lam WH.Chan S.Yu W.-Y.Li YM.Guo R.Zhou Z.Chan ASC. J. Am. Chem. Soc. 2006, 128: 5955 - 15 Reduction attempts on 5 using MeI/LiAlH4 and PhSiH3 were also unsuccessful. See:
Imamoto T.Kikuchi S.Miura T.Wada Y. Org. Lett. 2001, 3: 87 -
16a
Coumhe T.Lawrence NJ.Muhammad F. Tetrahedron Lett. 1994, 35: 625 ; and references cited therein -
16b
Replacement of (EtO)3SiH with the more economical and non-toxic polyhydromethylsiloxane (PMHS), as suggested in the above reference, was similarly effective (110 °C, 56 h) but caused problems of incomplete separation of polymeric siloxanes in column chromatography.
-
18a
Whisler MC.MacNeil S.Snieckus V.Beak P. Angew. Chem. Int. Ed. 2004, 43: 2206 -
18b
Macklin T.Snieckus V. In Handbook of C-H TransformationsDyker G. Wiley-VCH; Weinheim: 2005. p.106 - 19 For previous cross-coupling of hindered benzamides which required special conditions and led to poorer yields, see:
Fu J.-m.Sharp MJ.Snieckus V. Tetrahedron Lett. 1988, 29: 5459 -
20a
Monguchi M.Kume A.Hattori K.Maegawa T.Sajiki H. Tetrahedron 2006, 62: 7926 -
20b Review:
Alonso F.Beletskaya IP.Yus M. Chem. Rev. 2002, 102: 4009 -
20c
Morra MJ.Borek V.Koolpe J. J. Environ. Qual. 2000, 29: 706 ; and refs cited therein - Reviews:
-
21a
Qadir M.Möchel T.Hii KK. Tetrahedron 2000, 56: 7975 -
21b
Beletskaya IP.Cheprakov AV. Chem. Rev. 2000, 100: 3009 -
21c
Oestreich M. Eur. J. Org. Chem. 2005, 783 - 22
Littke AF.Fu GC. J. Am. Chem. Soc. 2001, 123: 6989
References and Notes
As established by X-ray single crystal (Figure
[2]
) and NMR analysis, compound 4 shows strong intra- and intermolecular hydrogen bonds in the solid state and in solution. The (C1)O-H-O=P intramolecular bond distances are 1.079 Å and 1.533 Å, respectively, while intermolecular (C4′)O-H-O=P bond distances are 1.046 Å and 1.794 Å, respectively. The 31P NMR spectrum reveals a low field shifted phosphorus signal at δ = 67.9 ppm and the 1H NMR spectrum (anhyd DMSO-d
6) exhibits two widely separated signals for the hydroxyl hydrogens at δ = 13.66 ppm and δ = 7.95 ppm confirming the presence of only one intramolecular (C1)OH-O=P hydrogen bond. A similar phenomenon was observed in benzene-d
6 solution.
Crystallographic data (excluding structure factors) for the structure of 4 have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-609270. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK [fax: +44(1223)336033; e-mail: deposit@ccdc.cam.ac.uk).
Use of an equimolar ligand 7:Pd(OAc)2 ratio produced a very active catalyst, leading to 50% product formation in 15 min in DMF or MeOH at 40 °C (Table [1] , entry 1).
23For hindered examples, Table [1] , entry 2: S-phos (93%), [6a] Nap-Phos: (98%); entry 3: S-phos (82%), [6a] Nap-Phos: (76%); entry 4: S-phos (86%), [6a] Nap-Phos (70%).
24A preliminary PM3 modeling study shows a low racemization barrier (20 kcal/mol) for Nap-Phos which precludes its use as a chiral ligand in cross coupling reactions under conditions described herein. Few chiral non-racemic atropisomeric ligand motifs are known. For discussion, see ref. 14c.