Synlett 2006(18): 2908-2913  
DOI: 10.1055/s-2006-951538
LETTER
© Georg Thieme Verlag Stuttgart · New York

A Mixed Naphthyl-Phenyl Phosphine Ligand Motif for Suzuki, Heck, and Hydrodehalogenation Reactions

Oleg M. Demchuk*, Bilge Yoruk, Tom Blackburn, Victor Snieckus*
Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, ON, K7L 3N6, Canada
Fax: +1(613)5336089; e-Mail: snieckus@chem.queensu.ca;
Further Information

Publication History

Received 25 September 2006
Publication Date:
25 October 2006 (online)

Abstract

Nap-Phos, representing a new naphthyl-phenyl biaryl-type phosphine ligand class and available by a short synthesis (4 steps, 71% overall yield), effectively catalyzes the Suzuki-Miyaura (including highly hindered cases), hydrodehalogenation, and Heck reactions.

    References and Notes

  • 1a Metal-Catalyzed Cross-Coupling Reactions   2nd ed.:  Meijere A. Diederich F. Wiley-VCH; Weinheim: 2004. 
  • 1b Handbook of Organopalladium Chemistry for Organic Synthesis   Negishi E. Wiley-Interscience; Weinheim: 2002. 
  • 1c For mechanistic aspects, see: Kozuch S. Amatore C. Jutand A. Shaik S. Organometallics  2005,  24:  2319 
  • See, for example:
  • 2a King AO. Yasuda N. Top. Organomet. Chem.  2004,  6:  205 
  • 2b Rouhi AM. Chem. Eng. News  2004,  82 (Sept. 6):  49 
  • 2c Carey JS. Laffan D. Thomson C. Williams MT. Org. Biomol. Chem.  2006,  4:  2337 ; especially p. 2345
  • 3 Review: Wilkinson MJ. van Leeuwen PWNM. Reek JNH. Org. Biomol. Chem.  2005,  3:  2371 
  • Reviews:
  • 4a Clarke ML. Heydt M. Organometallics  2005,  24:  6475 
  • 4b Shimizu H. Nagasaki I. Saito T. Tetrahedron  2005,  61:  5405 
  • 4c Valentine DH. Hillhouse JH. Synthesis  2003,  2437 
  • 5 Hillier AC. Grasa GA. Viciu MS. Lee HM. Yang C. Nolan SP. J. Organomet. Chem.  2002,  653:  69 
  • 6a For an excellent overview and comprehensive list of references, see: Barder TE. Walker SD. Martinelli JR. Buchwald SL. J. Am. Chem. Soc.  2005,  127:  4685 
  • For additional impact of SPhos on Suzuki-Miyaura chemistry, see:
  • 6b Walker SD. Martinelli JR. Buchwald SL. Angew. Chem. Int. Ed.  2004,  43:  1871 
  • 6c Barder TE. Buchwald SL. Org. Lett.  2004,  6:  2649 
  • 6d Billingsley KL. Anderson KW. Buchwald SL. Angew. Chem. Int. Ed.  2006,  45:  3484 
  • 7 The significance of an η1-Pd-C(ipso) interaction to the lifetime of the catalyst is being investigated, see ref. 6 and: Kočovský P. Vyskočil S. Cisařová I. Sejbal J. Tilerová I. Smrčina M. Lloyd-Jones GC. Stephen SC. Butts CP. Murray M. Langer V. J. Am. Chem. Soc.  1999,  121:  7714 
  • 8a For an outstanding critical review on the Heck and Suzuki reactions focusing on the active species, which presents a detailed analysis of P-ligands, see: Phan NTS. Van Der Sluys M. Jones CW. Adv. Synth. Catal.  2006,  348:  609 
  • 8b For a review on hydrophilic P-based ligands, see: Shaughnessy KH. Eur. J. Chem.  2006,  1827 
  • 9 Yin J. Buchwald SL. J. Am. Chem. Soc.  2000,  122:  12051 
  • For a practical synthesis of biphenyl phosphine ligands using a Grignard-benzyne reaction, see:
  • 10a Tomori H. Fox JM. Buchwald SL. J. Org. Chem.  2000,  65:  5334 
  • 10b For recent work, see: Baillie C. Chen W. Xiao J. Tetrahedron Lett.  2001,  42:  9085 ; and references cited therein
  • 11 Schenck HV. Nilsson P. Andappan MS. Larhed M. J. Org. Chem.  2004,  69:  5212 
  • 12 Villemin D. Racha F. Tetrahedron Lett.  1986,  27:  1789 
  • For similar nucleophilic aromatic substitutions driven by coordination effects, see:
  • 14a Meyers AI. Hummelsbach RJ. J. Am. Chem. Soc.  1985,  107:  682 
  • 14b Review: Meyers AI. Nelson TD. Moorlag H. Rawson DJ. Merier A. Tetrahedron  2004,  60:  4459 
  • 14c For recent work, see: Qiu L. Kwong FY. Wu J. Lam WH. Chan S. Yu W.-Y. Li YM. Guo R. Zhou Z. Chan ASC. J. Am. Chem. Soc.  2006,  128:  5955 
  • 15 Reduction attempts on 5 using MeI/LiAlH4 and PhSiH3 were also unsuccessful. See: Imamoto T. Kikuchi S. Miura T. Wada Y. Org. Lett.  2001,  3:  87 
  • 16a Coumhe T. Lawrence NJ. Muhammad F. Tetrahedron Lett.  1994,  35:  625 ; and references cited therein
  • 16b

    Replacement of (EtO)3SiH with the more economical and non-toxic polyhydromethylsiloxane (PMHS), as suggested in the above reference, was similarly effective (110 °C, 56 h) but caused problems of incomplete separation of polymeric siloxanes in column chromatography.

  • 18a Whisler MC. MacNeil S. Snieckus V. Beak P. Angew. Chem. Int. Ed.  2004,  43:  2206 
  • 18b Macklin T. Snieckus V. In Handbook of C-H Transformations   Dyker G. Wiley-VCH; Weinheim: 2005.  p.106 
  • 19 For previous cross-coupling of hindered benzamides which required special conditions and led to poorer yields, see: Fu J.-m. Sharp MJ. Snieckus V. Tetrahedron Lett.  1988,  29:  5459 
  • 20a Monguchi M. Kume A. Hattori K. Maegawa T. Sajiki H. Tetrahedron  2006,  62:  7926 
  • 20b Review: Alonso F. Beletskaya IP. Yus M. Chem. Rev.  2002,  102:  4009 
  • 20c Morra MJ. Borek V. Koolpe J. J. Environ. Qual.  2000,  29:  706 ; and refs cited therein
  • Reviews:
  • 21a Qadir M. Möchel T. Hii KK. Tetrahedron  2000,  56:  7975 
  • 21b Beletskaya IP. Cheprakov AV. Chem. Rev.  2000,  100:  3009 
  • 21c Oestreich M. Eur. J. Org. Chem.  2005,  783 
  • 22 Littke AF. Fu GC. J. Am. Chem. Soc.  2001,  123:  6989 
13

As established by X-ray single crystal (Figure [2] ) and NMR analysis, compound 4 shows strong intra- and intermolecular hydrogen bonds in the solid state and in solution. The (C1)O-H-O=P intramolecular bond distances are 1.079 Å and 1.533 Å, respectively, while intermolecular (C4′)O-H-O=P bond distances are 1.046 Å and 1.794 Å, respectively. The 31P NMR spectrum reveals a low field shifted phosphorus signal at δ = 67.9 ppm and the 1H NMR spectrum (anhyd DMSO-d 6) exhibits two widely separated signals for the hydroxyl hydrogens at δ = 13.66 ppm and δ = 7.95 ppm confirming the presence of only one intramolecular (C1)OH-O=P hydrogen bond. A similar phenomenon was observed in benzene-d 6 solution.
Crystallographic data (excluding structure factors) for the structure of 4 have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-609270. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK [fax: +44(1223)336033; e-mail: deposit@ccdc.cam.ac.uk).

17

Use of an equimolar ligand 7:Pd(OAc)2 ratio produced a very active catalyst, leading to 50% product formation in 15 min in DMF or MeOH at 40 °C (Table [1] , entry 1).

23

For hindered examples, Table [1] , entry 2: S-phos (93%), [6a] Nap-Phos: (98%); entry 3: S-phos (82%), [6a] Nap-Phos: (76%); entry 4: S-phos (86%), [6a] Nap-Phos (70%).

24

A preliminary PM3 modeling study shows a low racemization barrier (20 kcal/mol) for Nap-Phos which precludes its use as a chiral ligand in cross coupling reactions under conditions described herein. Few chiral non-racemic atropisomeric ligand motifs are known. For discussion, see ref. 14c.