Synlett 2006(18): 3088-3094  
DOI: 10.1055/s-2006-951519
LETTER
© Georg Thieme Verlag Stuttgart · New York

Reactivity of Pd(0)(NHC)2 (NHC: N-Heterocyclic Carbene) in Oxidative ­Addition with Aryl Halides in Heck Reactions

Sylvain Rolanda, Pierre Mangeneya, Anny Jutand*b
a Laboratoire de Chimie Organique, UMR CNRS 7611, Université Pierre et Marie Curie, Tour 44-45, 2ème étage. 4 Place Jussieu, 75252, Paris Cedex 5, France
b Ecole Normale Supérieure, Département de Chimie, UMR CNRS-ENS-UPMC 8640, 24 Rue Lhomond, 75231, Paris Cedex 5, France
Further Information

Publication History

Received 17 April 2006
Publication Date:
25 October 2006 (online)

Abstract

Pd(0)(NHC)2 complexes (saturated or unsaturated NHC) may react in oxidative addition of aryl halides by two mechanisms: a dissociative mechanism involving Pd(0)(NHC) as reactive complex formed after dissociation of one carbene or an associative mechanism involving Pd(0)(NHC)2 as the reactive complex. The mechanism of the oxidative addition of aryl halides with Pd(0)(2)2 (2: 1,3-di-benzyl-4,5-di-tert-butylimidazolidin-2-ylidene) is established in this work (associative mechanism) and compared to that of Pd(0)(1)2 (1: 1,3-di-tert-butylimidazolin-2-ylidene) which reacts via Pd(0)(1) in a dissociative mechanism, as reported by Cloke et al. Both complexes activate aryl chlorides at room temperature. The more reactive complex with aryl chlorides is Pd(0)(2)2 which directly reacts in an associative mechanism. Pd(0)(2)2 is even more reactive than Pd(0)(1). Consequently, the reactivity of Pd(0)(NHC)2 complexes in oxidative additions is not connected to the structure of the reactive species, i.e., Pd(0)(NHC)2 vs. Pd(0)(NHC) but is more relevant to the electronic and steric properties of the carbene ligand.

    References and Notes

  • 1 Herrmann WA. Elison M. Fischer J. Köcher C. Artus GRJ. Angew. Chem., Int. Ed. Engl.  1995,  34:  2371 
  • For reviews, see:
  • 2a Herrmann WA. Angew. Chem. Int. Ed.  2002,  41:  1290 
  • 2b Hillier AC. Grasa GA. Viviu MS. Lee HM. Yang C. Nolan SP. J. Organomet. Chem.  2002,  653:  69 
  • 2c Herrmann WA. Öfele K. Preysing DV. Schneider S. J. Organomet. Chem.  2003,  687:  229 
  • 2d Cavell KJ. McGuinness DS. Coord. Chem. Rev.  2004,  248:  671 
  • 2e Farina V. Adv. Synth. Catal.  2004,  346:  1553 
  • 2f Scott NM. Nolan SP. Eur. J. Inorg. Chem.  2005,  1815 
  • 2g Alonso F. Beletskaya IP. Yus M. Tetrahedron  1995,  61:  11771 
  • For reviews on properties of NHCs, see:
  • 3a Regitz M. Angew. Chem., Int. Ed. Engl.  1996,  35:  725 
  • 3b Herrmann WA. Köcher C. Angew. Chem., Int. Ed. Engl.  1997,  36:  2162 
  • 3c Bourissou D. Guerret O. Gabbaï FP. Bertrand G. Chem. Rev.  2000,  100:  39 
  • 3d Pombeiro AJL. J. Organomet. Chem.  2005,  690:  6021 
  • 4 Xu L. Chen W. Xiao J. Organometallics  2000,  19:  1123 
  • 5a McGuinness DS. Cavell KJ. Skelton BW. White AH. Organometallics  1999,  18:  1596 
  • 5b Selvakumar K. Zapf A. Beller M. Org. Lett.  2002,  18:  3031 
  • 6a Galardon E. Ramdeehul S. Brown JM. Cowley A. Hii KK. Jutand A. Angew. Chem. Int. Ed.  2002,  41:  1760 
  • 6b

    Kurbangalieva, A.; Hii, K. K.; Galardon, E.; Carmichael, D.; Brown, J. M.; Jutand, A., to be submitted.

  • 6c For associative oxidative additions of alkyl halides with Pd(0)L2, see: Hills ID. Netherton MR. Fu GC. Angew. Chem. Int. Ed.  2003,  42:  5749 
  • 7a Hartwig JF. Paul F. Organometallics  1995,  14:  3030 
  • 7b Stambuli JP. Bühl M. Hartwig JF. J. Am. Chem. Soc.  2002,  124:  9346 
  • 7c Barrios-Landeros F. Hartwig JF. J. Am. Chem. Soc.  2005,  127:  6944 
  • For the synthesis of Pd(0)(carbene)2 with unsaturated carbenes, see ref. 5a and:
  • 8a Arnold PL. Cloke FGN. Geldbach T. Hitchcock PB. Organometallics  1999,  18:  3228 
  • 8b Titcomb LR. Caddick S. Clocke FGN. Wilson DJ. McKerrecher D. Chem. Commun.  2001,  1388 
  • 8c Yamashita M. Goto K. Kawashima T. J. Am. Chem. Soc.  2005,  127:  7294 
  • 8d

    For the synthesis of a Pd(0)(carbene)2 with a saturated carbene, see ref. 8b.

  • 9a Albert K. Gisdakis P. Rösch N. Organometallics  1998,  17:  1608 
  • 9b Caddick S. Cloke FGN. Hitchcock PB. Leonard J. Lewis AKK. McKerrecher D. Titcomb LR. Organometallics  2002,  21:  4318 
  • 10 Lewis AKD. Caddick S. Cloke FGN. Billingham NC. Hitchcock PB. Leonard J. J. Am. Chem. Soc.  2003,  125:  10066 
  • 11 Pytkowicz J. Roland S. Mangeney P. Meyer G. Jutand A. J. Organomet. Chem.  2003,  678:  166 
  • 12 Green JC. Herbert BJ. Lonsdale R. J. Organomet. Chem.  2005,  690:  6054 
  • 13 Herrmann WA. Böhm VPW. Gstöttmayr CWK. Grosche M. Reisinger C.-P. Weskamp T. J. Organomet. Chem.  2001,  617-618:  616 
  • For stable unsaturated NHC carbenes, see:
  • 14a Arduengo AJ. Harlow RL. Kline M. J. Am. Chem. Soc.  1991,  113:  361 
  • 14b Arduengo AJ. Dias HV. Harlow RL. Kline M. J. Am. Chem. Soc.  1992,  114:  5530 
  • 15 Andrus MB. Song C. Zhang J. Org. Lett.  2002,  4:  2079 
  • For stable saturated NHC carbenes, see:
  • 16a Arduengo AJ. Goerlich JR. Marshall WJ. J. Am. Chem. Soc.  1995,  117:  11027 
  • 16b Denk MK. Thadani A. Hatano K. Lough AJ. Angew. Chem., Int. Ed. Engl.  1997,  36:  2607 
  • 16c Arduengo AJ. Krafczyk R. Schmutzler R. Tetrahedron  1999,  55:  14523 
  • 16d Denk MK. Rodezno JM. Gupta S. Lough AJ. J. Organomet. Chem.  2001,  617-618:  242 
  • 16e Hahn FE. Paas M. Le Van D. Lüger T. Angew. Chem. Int. Ed.  2003,  42:  5243 
  • For discussions on saturated and unsaturated NHC carbenes as ligands of metal complexes, see ref. 3e and:
  • 17a Lee M.-T. Hu C.-H. Organometallics  2004,  23:  976 
  • 17b Dorta R. Stevens ED. Scott NM. Costabile C. Cavallo L. Hoff CD. Nolan SP. J. Am. Chem. Soc.  2005,  127:  2485 
  • 17c Cavallo L. Correa A. Costabile C. Jacobsen H. J. Organomet. Chem.  2005,  690:  5407 
  • 18a

    The slight difference in the oxidation potentials of the Pd(0)(2)2 complexes generated by the electrochemical reduction of PdCl2(2)2 and PdI2(2)2 arises from the oxidation process which first generates a Pd(I) complex prompted to react with the halide ions generated in the reduction of the Pd(II) complexes (ECE mechanism). [18b]

  • 18b For ECE and CE mechanisms, see: Bard AJ. Faulkner LR. Electrochemical Methods   Wiley; New York: 1980. 
  • 19 Amatore C. Jutand A. Khalil F. M’Barki MA. Mottier L. Organometallics  1993,  12:  3168 
  • 21a

    See for example the detection of Pd(0)(PPh3)2 in its non favored equilibrium with Pd(0)(dba)(PPh3)2 by cyclic voltammetry even if the low thermodynamic concentration of Pd(0)(PPh3)2 in this equilibrium excludes its detection in 31P NMR. [19] What is detected in cyclic voltammetry performed at low scan rate at a steady electrode is a dynamic concentration of Pd(0)(PPh3)2 as a consequence of the continuous shift if the equilibrium towards Pd(0)(PPh3)2 due to its oxidation and consumption in the diffusion layer (CE mechanism). [18b] Consequently, species present at low thermodynamic concentrations in endergonic equilibrium may be detected by cyclic voltammetry performed at low scan rates.

  • 21b

    If Pd(0)(2)2 dissociated to Pd(0)(2) and the unstable carbene 2: Pd(0)(2)2 ↔ Pd(0)(2) + 2 during the cyclic voltammetry, this would result in a continuous shift of the equilibrium to its right-hand side by the irreversible decomposition of the unstable carbene 2, making thus the Pd(0)(2)2 unstable. In this work, the Pd(0)(2)2 complex was generated transiently by the electrochemical reduction of PdI2(2)2 and was found to be quantitatively formed within the longest time scale investigated here (v = 0.2 Vs-1, δt = 100 s).

20

(a) Under stoichiometric conditions {[Pd(0)(2)2] = [PhBr] = C 0}, one has 1/x = kC 0 t + 1. When x = 0.5, one has 2 = kC 0(ΔE)/v 1/2 + 1. C 0/v 1/2 was determined as indicated in Figure [7] with ΔE = (|EpRinv| - |EpR1|)+(|EpRinv| - |EpO1|) (EpRinv is the inversion potential of the scan). (b) PhCl and 4-CF3C6H4Cl were used in large excess. The kinetic law is: lnx = -k[ArCl]t. When x = 0.5, one has ln0.5 = -k[ArCl]t 1/2 = -k[ArCl](ΔE)/v 1/2 with ΔE determined as indicated just above. [ArCl]/v 1/2 was determined as indicated in Figure [8] .

22

From DFT calculations it comes out that PMe3 is a less good ligand than carbenes for Pd(0) complexes. [9a] This effect must be amplified for PPh3.

23

Procedure for the Determination of the Rate Constant of the Oxidative Addition of Aryl Chlorides with the Electrogenerated Pd(0)(2) 2 .
Cyclic voltammetry was performed with a generator PAR Model 175 and a home-made potentiostat. The voltammograms were recorded with a digital oscilloscope Nicolet 3091. Experiments were carried out in a three-electrode thermostated cell connected to a Schlenk line. The counter electrode was a platinum wire of ca. 1 cm2 apparent surface area; the reference a saturated calomel electrode (Radiometer) separated from the solution by a bridge filled with 2 mL of DMF containing n-Bu4NBF4 (0.3 M). The working electrode was a steady gold disk electrode (d = 1 mm). To 8 mL of DMF containing n-Bu4NBF4 (0.3 M) was added 26 mg (0.024 mmol, 3 mM) of PdI2(2) 2 . The cyclic voltammetry was performed at different scan rates (from 0.2-1 Vs-1) in the absence of PhCl and then in the presence of increasing amounts of PhCl (from 0.03-1.05 M) at the same scan rates. A similar experiment was performed from 4-MeC6H4Cl, at the scan rate of 0.2 Vs-1 in the presence of 4-MeC6H4Cl (from 0.4 M to 1.7 M). Another experiment was performed from 4-CF3C6H4Cl. The scan rate was varied from 0.2-0.5 Vs-1 in the presence of 4-CF3C6H4Cl (from 0.03-0.45 M).