Minim Invasive Neurosurg 2006; 49(4): 210-215
DOI: 10.1055/s-2006-948305
Original Article

© Georg Thieme Verlag KG · Stuttgart · New York

Application of Neuronavigation System to Brain Tumor Surgery with Clinical Experience of 420 Cases

T.-Y. Jung 1 , S. Jung 1 , I.-Y. Kim 1 , S.-J. Park 1 , S.-S. Kang 1 , S.-H. Kim 1 , S.-C. Lim 2
  • 1Department of Neurosurgery, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Hwasun Hospital & Medical School, Gwangju, Republic of Korea
  • 2Department of Otorhinolaryngology, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Hwasun Hospital & Medical School, Gwangju, Republic of Korea
Further Information

Publication History

Publication Date:
13 October 2006 (online)

Abstract

A new era of neurosurgery has recently been unveiled with the advent of image-guided surgery. The use of neuronavigation is beginning to have a significant impact on a variety of intracranial procedures. Herein, we report our clinical experience using a neuronavigation system with different surgical applications and techniques for a variety of brain tumors. We used the BrainLab VectorVision® neuronavigation system, which is a frameless and image-guided system. We operated on 420 cases having various types of brain tumor with the help of this system. The mean target localizing accuracy and mean volume were 1.15 mm and 30.8 mL (0.2-216.4 mL), respectively. We utilized this system to effectively make bone flaps, to detect critically located, deep-seated, subcortical, skull-base and skull bone tumors, and to operate on intraparenchymal lesions with grossly unclear margins, such as gliomas. We also performed tumor biopsy using the combination of a conventional stereotactic biopsy instrument and an endoscope. The application of the neuronavigation system not only revealed benefits for operative planning, appreciation of anatomy, lesion location and the safety of surgery, but also greatly enhanced surgical confidence.

References

  • 1 Lunsford LD. Magnetic resonance imaging stereotactic thalamotomy: report of a case with comparison to computed tomography.  Neurosurgery. 1988;  23 363-367
  • 2 Leksell L, Leksell D, Schwebel J. Stereotaxis and nuclear magnetic resonance.  J Neurol Neurosurg Psychiatry. 1985;  48 14-18
  • 3 Barnett GH, Kormos DW, Steiner PC, Weisenberger J. Use of a frameless, armless sterotactic wand for brain tumor localization with two-dimensional and three-dimensional neuroimaging.  Neurosurgery. 1993;  33 674-678
  • 4 Guthrie BL, Adler Jr JR. Frameless stereotaxy: computer interactive neurosurgery.  Perspect Neurol Surg. 1991;  2 1-22
  • 5 Roberts DW, Strohbein JW, Hatch JF, Murray W, Kettenberger H. A frameless stereotactic integration of computerized tomographic imaging and the operative microscope.  J Neurosurg. 1986;  65 545-549
  • 6 McInerney J, Roberts DW. Frameless sterotaxy of the brain.  Mt Sinai J Med. 2000;  67 300-301
  • 7 Schulder M, Sernas TJ, Carmel PW. Cranial surgery and navigation with a compact intraoperative MRI system.  Acta Neurochir Suppl. 2003;  85 79-86
  • 8 Horsley V, Clarke RH. The structure and the function of the cerebellum examined by a new method.  Brain. 1908;  31 45-124
  • 9 Spiegel EA, Wycis HT, Marks M, Lee AJ. Stereotaxic apparatus for operations on the human brain.  Science. 1947;  106 349-350
  • 10 Watanabe E, Watanabe T, Manaka S, Mayanagi Y, Takakura K. Three-dimensional digitizer (Neuronavigator): new equipment for computed tomographic-guided stereotaxic surgery.  Surg Neurol. 1987;  27 545-547
  • 11 Watanabe E, Mayanagi Y, Kosugi Y, Manaka S, Takakura K. Open surgery assisted by the Neuronavigator, a stereotactic, articulated, sensitive arm.  Neurosurgery. 1991;  28 792-800
  • 12 Bucholz RD, Smith KR. A comparison of sonic digitizers versus light emitting diode-based localization. In: Maciunas RJ (editor) Image-guided Committee. Neurosurgery. AANS publications 1994: 179-200
  • 13 Gumprecht HK, Widenka DC, Lumenta CB. Brain vector vision neuronavigation system: technology and clinical experience in 131 cases.  Neurosurgery. 1999;  44 97-105
  • 14 Galloway RL, Maciunas RJ. An articulated localizing arm for neurosurgical use. In: Maciunas RJ (editor) Interactive Image-Guided Neurosurgery. Park Ridge, American Associated of Neurosurgical Surgeon 1993: 159-168
  • 15 Giorgi C, Casolino DS, Eisenberg MS, Eisenberg HM. Intraoperative image fusion in microneurosurgery: ultrasound and MRI/CT data superimposed to optical images.  Comp Aid Surg Abstracts from CIS. 1997;  97 7-35

Correspondence

Shin JungM.D., Ph.D. 

Department of Neurosurgery·Chonnam National University Hwasun Hospital

160 Ilsim-ri

Hwasun-eup

Hwasun-gun

Jeollanam-do 519-809

Republic of Korea

Phone: +82/61/37 97 66 6

Fax: +82/61/37 97 67 3

Email: sjung@chonnam.ac.kr