Subscribe to RSS
DOI: 10.1055/s-2006-947333
Total Synthesis of Sphingofungin F
Publication History
Publication Date:
04 August 2006 (online)
Abstract
A stereoselective approach toward sphingofungin F has been realized from l-quebrachitol. This synthesis featured a substrate-controlled asymmetric Michael addition, a regiospecific methylsulfonate elimination to construct the contiguous chiral centers in the target molecule.
Key words
sphingofungin F - total synthesis - Michael addition - l-quebrachitol - Wittig-type reaction
- For reviews, see:
-
1a
Hakomori S. In Sphingolipid Biochemistry. Handbook of Lipid Research Vol. 3:Kafner JN.Hakomori S. Plenum; New York: 1983. p.1 -
1b
Merrill AH.Sweeley CC. In Biochemistry of Lipids, Lipoproteins and MembranesVance DE.Vance J. Elsevier Science B. V.; Amsterdam: 1996. p.309 -
1c
Hannun YA. Sphingolipid-Mediated Signal Transduction Chapman and Hall; New York NY: 1997. -
1d
Hannum YA. Science 1996, 274: 1855 -
1e
Spiegel S.Milstein S. J. Membr. Biol. 1995, 146: 225 -
1f
Shayman JA. J. Am. Soc. Nephrol. 1996, 7: 171 -
1g
Igarashi Y. J. Biochem. (Tokyo) 1997, 122: 1080 -
1h
Ariga T.Jarvis WD.Yu RK. J. Lipid. Res. 1998, 39: 1 -
2a
Hannun YA.Loomis CR.Merrill AH.Bell RM. J. Biol. Chem. 1986, 261: 2604 -
2b
Hannun YA. Science 1989, 243: 500 -
3a
Nugent TC.Hudlicky T. J. Org. Chem. 1998, 63: 510 -
3b
Kobayashi S.Furuta T.Hayashi T.Nishijima M.Hanada K. J. Am. Chem. Soc. 1998, 120: 908 -
3c
Mandala SM.Harris GH. Methods Enzymol. 2000, 311: 335 -
4a
VanMiddlesworth F.Dufresne C.Wincott FE.Mosley RT.Wilson KE. Tetrahedron Lett. 1992, 33: 297 -
4b
VanMiddlesworth F.Giacobbe RA.Lopez M.Garrity G.Bland JA.Bartizal K.Fromtling RA.Polishook J.Zweerink M.Edison AM.Rozdilsky W.Wilson KE.Monaghan RL. J. Antibiot. 1992, 45: 861 -
4c
Horn WS.Smith JL.Bills GF.Raghoobar SL.Helms GL.Kurtz MB.Marrinan JA.Frommer BR.Thornton RA.Mandala SM. J. Antibiot. 1992, 45: 1692 -
5a
Fujita T.Inoue K.Yamamoto S.Ikumoto T.Sasaki S.Toyoma R.Yoneta M.Hoshino Y.Okumoto T. J. Antibiot. 1994, 47: 208 -
5b
Miyake Y.Kozutsumi Y.Nakamura S.Fujita T.Kawasaki T. Biochem. Biophys. Res. Commun. 1995, 211: 396 -
5c For synthesis of myriocin, see:
Oishi T.Ando K.Chida N. Chem. Commun. 2001, 1932 ; and references cited therein - 6
Zweerink MM.Edison AM.Wells GB.Pinto W.Lester RL. J. Biol. Chem. 1992, 267: 25032 ; and references cited therein -
7a
Trost BM.Lee CB. J. Am. Chem. Soc. 2001, 123: 12191 -
7b
Trost BM.Lee CB. J. Am. Chem. Soc. 1998, 120: 6818 -
8a
Wang B.Yu X.-M.Lin G.-Q. Synlett 2001, 904 -
8b
Liu D.-G.Wang B.Lin G.-Q. J. Org. Chem. 2000, 65: 9114 -
9a
Nakamura T.Shiozaki M. Tetrahedron 2002, 58: 8779 -
9b
Nakamura T.Shiozaki M. Tetrahedron Lett. 2001, 42: 2701 - 10
Oishi T.Ando K.Inomiya K.Sato H.Iida M.Chida N. Org. Lett. 2002, 4: 151 -
11a
Kobayashi S.Furuta T.Hayashi T.Nishijima M.Hanada K. J. Am. Chem. Soc. 1998, 120: 908 -
11b
Kobayashi S.Furuta T. Tetrahedron 1998, 54: 10275 - 12
Lee K.-Y.Oh C.-Y.Ham W.-H. Org. Lett. 2001, 4: 4403 -
13a
Sano S.Kobayashi Y.Kondo T.Takebayashi M.Maruyama S.Fujita T.Nagao Y. Tetrahedron Lett. 1995, 36: 2097 -
13b
Payette DR.Just G. Can. J. Chem. 1981, 59: 269 - 14 The following reference provides detailed procedures for both the preparation of precursors of both 8 and its regioisomer, and the preparation of the regioisomer of compound 8 from the corresponding precursor. It should be mentioned that the synthesis of 8 was accomplished from its corresponding precursor following the same procedure. See:
Qiao L.Hu Y.Nan F.Powis G.Kozikowski AP. Org. Lett. 2000, 2: 115 - For recent examples of Wittig and Horner-Wadsworth-Emmons reaction, see:
-
15a
List B.Doehring A.Fonseca MTH.Job A.Torres RR. Tetrahedron 2006, 62: 476 - For reviews, see:
-
15b
Harvey RG. Curr. Org. Chem. 2004, 8: 303 -
15c
Quan L.-G.Cha J.-K. Chem. Phys. Lipids 2004, 128 -
15d
Rein T.Vares L.Kawasaki I.Pedersen TM.Norrby P.-O.Brandt P.Tanner D. Phosphorus, Sulfur Silicon Relat. Elem. 1999, 144-146: 169 -
16a
Cardillo G.Simone AD.Gentilucci L.Sabatino P.Tomasini C. Tetrahedron Lett. 1994, 35: 5051 -
16b
Trost BM.Dake GR. J. Org. Chem. 1997, 62: 5670 -
16c
Krawczyk H. Synth. Commun. 2000, 30: 1787 -
18a
Paulsen H.Heiker FR. Angew Chem., Int. Ed. Engl. 1980, 19: 904 -
18b
Paulsen H.Heiker FR. Liebigs Ann. Chem. 1981, 2180 - 19
Bartlett PA.Johnson WS. Tetrahedron Lett. 1970, 4459 - For recent examples of Barton decarboxylation, see:
-
20a
Masterson DS.Porter NA. Org. Lett. 2002, 4: 4253 -
20b
Elena M.Taddei M. Tetrahedron Lett. 2001, 42: 3519 -
20c For a review, see:
Barton DHR. Aldrichimica Acta 1990, 23: 3 -
21a
Gigg J.Gigg R.Payne S.Conant R. J. Chem. Soc., Perkin. Trans. 1 1987, 423 -
21b
Vacca JP.de Solms SJ.Huff JR. J. Am. Chem. Soc. 1987, 109: 3478 -
21c
Vacca JP.de Solms SJ.Huff JR.Billington BC.Baker R.Kulagowski JJ.Mawer IM. Tetrahedron 1989, 45: 5679 -
23a
Bredenkamp MW.Holzapfel CW.Swanepoel AD. Tetrahedron Lett. 1990, 31: 2759 -
23b
David S.Hanessian S. Tetrahedron 1985, 41: 643 -
23c
Pereyre M.Quintard J.-P.Rahm A. Tin in Organic Synthesis Butterworths; London: 1987. p.261 -
25a
Chida N.Yamada L.Suzuki M.Ogawa S. J. Carbohydr. Chem. 1992, 11: 137 -
25b
Paulsen H.Roeben W. Liebigs Ann. Chem. 1985, 5: 974
References and Notes
Analytical Data of Compound 9.
Amorphous solid, [α]D
25 +15.6 (c 0.35, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 7.67-7.85 (m, 4 H), 7.29 (d, J = 8.2 Hz, 2 H), 6.95 (d, J = 8.4 Hz, 2 H), 4.65 (d, J = 11.0 Hz, 2 H), 4.43 (d, J = 4.1 Hz, 1 H), 4.40 (s, 3 H), 4.28 (m, 1 H), 4.19 (d, J = 10.6 Hz, 1 H), 4.07 (dd, J
1 = 10.2 Hz, J
2 = 9.0 Hz, 1 H), 3.92 (s, 3 H), 3.65 (dd, J
1 = 9.6 Hz, J
2 = 8.8 Hz, 1 H), 2.27 (d, J = 7.4 Hz, 2 H), 1.53 (s, 3 H), 1.49 (s, 3 H), 1.39 (s, 3 H), 1.34 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 171.03, 166.48, 166.50, 159.31, 158.70, 134.57, 134.45, 134.43, 133.63, 131.66, 131.38, 129.89, 129.50, 129.48, 116.45, 110.76, 110.54, 80.02, 79.89, 79.07, 76.75, 75.34, 73.36, 72.16, 71.40, 57.86, 27.33, 27.06, 26.68, 24.65. HRMS: m/z calcd for C31H35NO10: 581.2261; found: 581.2263.
Analytical Data of Compound 12.
Amorphous solid, [α]D
25 +20.3 (c 0.15, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 7.70-7.88 (m, 4 H), 7.27-7.33 (m, 6 H), 6.86-6.89 (m, 4 H), 6.85 (d, J = 8.3 Hz, 2 H), 4.63-4.68 (m, 6 H), 4.40 (d, J = 3.8 Hz, 1 H), 4.29 (m, 1 H), 3.90 (d, J = 10.6 Hz, 1 H), 3.83 (2 × s, 6 H), 3.80 (s, 3 H), 3.48 (dd, J
1 = 10.6 Hz, J
2 = 10.2 Hz, 1 H), 3.45 (dd, J
1 = 10.6 Hz, J
2 = 9.8 Hz, 1 H), 1.67 (s, 3 H), 1.36 (s, 3 H), 1.33 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 166.68, 166.50, 159.31, 159.16, 157.35, 138.56, 138.45, 135.46, 135.15, 134.43, 133.10, 131.58, 131.38, 130.73, 129.89, 129.50, 128.55, 128.38, 128.37, 128.00, 127.99, 113.91, 110.89, 83.22, 81.49, 81.28, 76.50, 75.60, 71.73, 69.19, 55.63, 27.35, 25.91.
Analytical Data of Compound 6.
Amorphous solid, [α]D
25 +8.9 (c 0.20, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 7.74-7.90 (m, 4 H), 7.26-7.33 (m, 6 H), 6.86-6.89 (m, 4 H), 6.85 (d, J = 8.0 Hz, 2 H), 5.31 (s, 1 H), 4.64-4.68 (m, 4 H), 4.64 (d, J = 9.6 Hz, 2 H), 3.86 (d, J = 9.2 Hz, 1 H), 3.85 (s, 3 H), 3.81 (s, 3 H), 3.80 (s, 3 H), 3.46 (dd, J
1 = 9.6 Hz, J
2 = 7.8 Hz, 1 H), 3.35 (br s, 1 H), 3.35 (s, 3 H), 1.66 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 165.78, 165.50, 159.31, 159.26, 139.77, 138.85, 138.46, 135.46, 135.02, 134.44, 133.20, 132.66, 131.75, 131.23, 129.89, 129.88, 128.05, 127.98, 127.85, 126.88, 110.91, 110.89, 83.63, 81.62, 81.28, 80.66, 75.81, 75.47, 74.27, 73.97, 55.23, 55.20. HRMS: m/z calcd for C40H41NO9: 679.2781; found: 679.2785.
Analytical Data for Compound 2 (Sphingofungin F).
Amorphous solid, [α]D
25 +1.33 (c 0.20, MeOH). 1H NMR (400 MHz, CD3OD): δ = 5.78 (dt, J
1 = 15.6 Hz, J
2 = 6.6 Hz, 1 H), 5.46 (dd, J
1 = 15.5 Hz, J
2 = 8.0 Hz, 1 H), 4.11 (t, J = 7.6 Hz, 1 H), 3.86 (br s, 1 H), 3.67 (d, J = 7.5 Hz, 1 H), 2.45 (t, J = 7.5 Hz, 4 H), 2.04-2.06 (m, 2 H), 1.49-1.56 (m, 4 H), 1.48 (s, 3 H), 1.26-1.43 (m, 12 H), 0.90 (t, J = 6.7 Hz, 3 H). 13C NMR (100 MHz, CD3OD): δ = 214.53, 175.32, 135.75, 130.30, 76.25, 75.73, 72.44, 67.03, 43.50, 33.52, 32.79, 30.26, 30.03, 25.02, 23.67, 21.80, 14.43.