Semin Thromb Hemost 2006; 32: 098-110
DOI: 10.1055/s-2006-939559
Copyright © 2006 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

The Clinical Use and Immunologic Impact of Thrombin in Surgery

Jeffrey H. Lawson1
  • 1Departments of Surgery and Pathology, Duke University Medical Center, Durham, North Carolina
Further Information

Publication History

Publication Date:
02 May 2006 (online)

ABSTRACT

Thrombin is a naturally derived enzyme that has been widely characterized for its roles in hemostasis, inflammation, and cell signaling. Thrombin has been purified from numerous sources and used as a clinical aid for topical hemostasis for more than 60 years. Due to both its ease of use and apparent effectiveness, thrombin has become used routinely as an aid for topical hemostasis in nearly all types of surgical procedures, including but not limited to cardiovascular, orthopedic, neurologic, general, gynecologic, and dental procedures. Due to the widespread acceptance of thrombin in the surgical setting, it is conservatively estimated that at least 1 million patients in the United States are treated with topical applications of thrombin each year. Although the U.S. Food and Drug Administration (FDA) has approved a wide array of topical and biologic products to stop surgical bleeding, the only thrombin that is currently FDA approved as a stand-alone hemostatic product in the United States is derived from bovine sources. Bovine-derived thrombin has potent biologic activity in its ability to convert fibrinogen to fibrin, activate platelets, and induce vascular contraction. However, it has also been shown to induce a robust immune response following human exposure. Numerous reports have documented an array of clinical events that follow bovine thrombin exposure, which include the development of antibodies against thrombin, prothrombin, factor V, and cardiolipin. In some well-described cases, these antibodies have led to clinical syndromes that range from severe postoperative bleeding to high rates of vascular bypass graft thrombosis. Furthermore, experimental applications of bovine thrombin to various strains of mice have induced a postexposure autoimmune syndrome that was pathologically identical to lupus. Thrombin-derived products are well accepted by the surgical community for use as an aid for hemostasis, but the bovine-derived products have an unacceptably high and unnecessary association with immunologic side effects. If a nonimmunologic and effective thrombin were developed, one would expect it to be rapidly adopted by the clinical community.

REFERENCES

  • 1 Schmidt A. Über den Faserstoff und die Ursache seiner Gerinnung. Arch Anat Physiol. 1861 (Reichert-Dubois-Reymonds) 545-675
  • 2 Schmidt A. Neue Untersuchungen über die Faserstoffgerinnung.  Pflügers Arch ges Physiol. 1872;  6 413
  • 3 Schmidt A. Zur Blutlehre. Leipzig, Austria; Vogel 1892
  • 4 Lundblad R L, Fenton J W, Mann K G. Chemistry and Biology of Thrombin. Ann Arbor, MI; Ann Arbor Science 1977
  • 5 Dahlbäck B. Blood coagulation.  Lancet. 2000;  355 1627-1632
  • 6 Mann K G. Biochemistry and physiology of blood coagulation.  Thromb Haemost. 1999;  82 165-174
  • 7 Bar-Shavit R, Hruska K A, Kahn A J, Wilner G D. Thrombin chemotactic stimulation of HL-60 cells: studies on thrombin responsiveness as a function of differentiation.  J Cell Physiol. 1987;  131 255-261
  • 8 Coughlin S R. Thrombin signalling and protease-activated receptors.  Nature. 2000;  407 258-264
  • 9 Coughlin S R. Sol Sherry lecture in thrombosis: how thrombin ‘talks' to cells: molecular mechanisms and roles in vivo.  Arterioscler Thromb Vasc Biol. 1998;  18 514-518
  • 10 Stenberg P E, McEver R P, Shuman M A, Jacques Y V, Bainton D F. A platelet alpha-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation.  J Cell Biol. 1985;  101 880-886
  • 11 Henn V, Slupsky J R, Grafe M et al.. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells.  Nature. 1998;  391 591-594
  • 12 Subramaniam M, Frenette P S, Saffaripour S et al.. Defects in hemostasis in P-selectin-deficient mice.  Blood. 1996;  87 1238-1242
  • 13 Cirino G, Cicala C, Bucci M R et al.. Thrombin functions as an inflammatory mediator through activation of its receptor.  J Exp Med. 1996;  183 821-827
  • 14 Crago A M, Wu H F, Hoffman M, Church F C. Monocyte chemoattractant activity of Ser195→Ala active site mutant recombinant alpha-thrombin.  Exp Cell Res. 1995;  219 650-656
  • 15 Hoffman M, Church F C. Response of blood leukocytes to thrombin receptor peptides.  J Leukoc Biol. 1993;  54 145-151
  • 16 Hoffman M, Cooper S T. Thrombin enhances monocyte secretion of tumor necrosis factor and interleukin-1 beta by two distinct mechanisms.  Blood Cells Mol Dis. 1995;  21 156-167
  • 17 Herbert J M, Dupuy E, Laplace M C et al.. Thrombin induces endothelial cell growth via both a proteolytic and a non-proteolytic pathway.  Biochem J. 1994;  303(pt 1) 227-231
  • 18 Patterson C, Stouffer G A, Madamanchi N, Runge M S. New tricks for old dogs: nonthrombotic effects of thrombin in vessel wall biology.  Circ Res. 2001;  88 987-997
  • 19 Gilchrist A, Vanhauwe J F, Li A et al.. G alpha minigenes expressing C-terminal peptides serve as specific inhibitors of thrombin-mediated endothelial activation.  J Biol Chem. 2001;  276 25672-25679
  • 20 Seegers W H, Warner E D, Brinkhous K M, Smith H P. The use of purified thrombin as a hemostatic agent.  Science. 1939;  89 86
  • 21 Warner E D, Brinkhous K M, Seegers W H, Smith H P. Further experience with the use of thrombin as a hemostatic agent.  Proc Soc Exp Biol. 1939;  41 655-657
  • 22 Tidrick R T, Seegers W H, Warner E D. Clinical experience with thrombin as an hemostatic agent.  Surgery. 1943;  14 191-196
  • 23 Seegers W H. Thrombin as a Hemostatic Agent. Boston, MA; Harvard University Press 1962: 581-591
  • 24 Machovich R. Clinical use of thrombin. In: Machovich R Thrombin. Volume II. Boca Raton, FL; CRC Press 1984: 105-106
  • 25 Gamba G, Fornasari P M, Grignani G, Dolci D, Colloi D. Haemostasis during transvesical prostatic adenomectomy. A controlled trial on the effect of drugs with antifibrinolytic and thrombin-like activities.  Blut. 1979;  39 89-98
  • 26 Rengachary S S, Manguoglu A B. Control of bone bleeding during Cloward procedure. Technical note.  J Neurosurg. 1980;  52 138-139
  • 27 Verstraete M. Hemostatic drugs. In: Bloom AL Haemostasis and Thrombosis. Edinburgh, UK; Churchill Livingstone 1987: 607-617
  • 28 Reeder S B, Widlus D M, Lazinger M. Low-dose thrombin injection to treat iatrogenic femoral artery pseudoaneurysms.  AJR Am J Roentgenol. 2001;  177 595-598
  • 29 Ferguson J D, Whatling P J, Martin V, Walton J, Banning A P. Ultrasound guided percutaneous thrombin injection of iatrogenic femoral artery pseudoaneurysms after coronary angiography and intervention.  Heart (British Cardiac Society). 2001;  85 E5
  • 30 Vaziri N D. Topical thrombin and control of bleeding from the fistula puncture sites in dialyzed patients.  Nephron. 1979;  24 254-256
  • 31 Stricker R B, Lane P K, Leffert J D et al.. Development of antithrombin antibodies following surgery in patients with prosthetic cardiac valves.  Blood. 1988;  72 1375-1380
  • 32 Flaherty M J, Henderson R, Wener M H. Iatrogenic immunization with bovine thrombin: a mechanism for prolonged thrombin times after surgery.  Ann Intern Med. 1989;  111 631-634
  • 33 Lawson J H, Pennell B J, Olson J D, Mann K G. Isolation and characterization of an acquired antithrombin antibody.  Blood. 1990;  76 2249-2257
  • 34 Rapaport S I, Zivelin A, Minow R A, Hunter C S, Donnelly K. Clinical significance of antibodies to bovine and human thrombin and factor V after surgical use of bovine thrombin.  Am J Clin Pathol. 1992;  97 84-91
  • 35 Cmolik B L, Spero J A, Magovern G J, Clark R E. Redo cardiac surgery: late bleeding complications from topical thrombin-induced factor V deficiency.  J Thorac Cardiovasc Surg. 1993;  105 222-227
  • 36 Israels S J, Leaker M T. Acquired inhibitors to factors V and X after exposure to topical thrombin: interference with monitoring of low molecular weight heparin and warfarin.  J Pediatr. 1997;  131 480-483
  • 37 Sands J J, Nudo S A, Ashford R G, Moore K D, Ortel T L. Antibodies to topical bovine thrombin correlate with access thrombosis.  Am J Kidney Dis. 2000;  35 796-801
  • 38 Kajitani M, Ozdemir A, Aguinaga M et al.. Severe hemorrhagic complication due to acquired factor V inhibitor after single exposure to bovine thrombin product.  J Card Surg. 2000;  15 378-382
  • 39 Ortel T L, Mercer M C, Thames E H, Moore K D, Lawson J H. Immunologic impact and clinical outcomes after surgical exposure to bovine thrombin.  Ann Surg. 2001;  233 88-96
  • 40 Schoenecker J G, Hauck R K, Mercer M C, Parker W, Lawson J H. Exposure to topical bovine thrombin during surgery elicits a response against the xenogeneic carbohydrate galactose alpha1-3galactose.  J Clin Immunol. 2000;  20 434-444
  • 41 Su Z, Izumi T, Thames E H, Lawson J H, Ortel T L. Antiphospholipid antibodies after surgical exposure to topical bovine thrombin.  J Lab Clin Med. 2002;  139 349-356
  • 42 Cruickshank M K, Black J, Wall W. Development of a factor V and thrombin inhibitor following partial hepatic resection and the use of topical thrombin concentrate.  Clin Lab Haematol. 1994;  16 187-190
  • 43 Izumi T, Kim S W, Greist A et al.. Fine mapping of inhibitory anti-factor V antibodies using factor V C2 domain mutants. Identification of two antigenic epitopes involved in phospholipid binding.  Thromb Haemost. 2001;  85 1048-1054
  • 44 Ortel T L, Moore K D, Quinn-Allen M A et al.. Inhibitory anti-factor V antibodies bind to the factor V C2 domain and are associated with hemorrhagic manifestations.  Blood. 1998;  91 4188-4196
  • 45 Charbonneau N. Clotting aid may cause complications later: Repeated use in surgeries leads to immune-system problems. Health Scout News. October 31, 2001
  • 46 Galili U. Graves' disease as a model for anti-Gal involvement in autoimmune diseases.  Subcell Biochem. 1999;  32 339-360
  • 47 Lin S S, Hanaway M J, Gonzalez-Stawinski G V et al.. The role of anti-Gal alpha1-3Gal antibodies in acute vascular rejection and accommodation of xenografts.  Transplantation. 2000;  70 1667-1674
  • 48 Erlanger B F. Auto-anti-idiotypy, autoimmunity and some thoughts on the structure of internal images.  Int Rev Immunol. 1989;  5 131-137
  • 49 Hall R. Molecular mimicry.  Adv Parasitol. 1994;  34 81-132
  • 50 Behar S M, Porcelli S A. Mechanisms of autoimmune disease induction. The role of the immune response to microbial pathogens.  Arthritis Rheum. 1995;  38 458-476
  • 51 Moran A P, Prendergast M M, Appelmelk B J. Molecular mimicry of host structures by bacterial lipopolysaccharides and its contribution to disease.  FEMS Immunol Med Microbiol. 1996;  16 105-115
  • 52 Atkinson M A. Molecular mimicry and the pathogenesis of insulin-dependent diabetes mellitus: still just an attractive hypothesis.  Ann Med. 1997;  29 393-399
  • 53 Karlsen A E, Dyrberg T. Molecular mimicry between non-self, modified self and self in autoimmunity.  Semin Immunol. 1998;  10 25-34
  • 54 Albert L J, Inman R D. Molecular mimicry and autoimmunity.  N Engl J Med. 1999;  341 2068-2074
  • 55 Mamula M J. Epitope spreading: the role of self peptides and autoantigen processing by B lymphocytes.  Immunol Rev. 1998;  164 231-239
  • 56 Schoenecker J G, Johnson R K, Lesher A P et al.. Exposure of mice to topical bovine thrombin induces systemic autoimmunity.  Am J Pathol. 2001;  159 1957-1969
  • 57 Ortel T L, Neal M C, Thames E H et al.. Inhibitor development after surgical exposure to bovine thrombin: antibody spectrum and clinical outcomes.  Blood. 1997;  90 469a , (abstr)
  • 58 Sarfati M R, Dilorenzo D J, Kraiss L W, Galt S W. Severe coagulopathy following intraoperative use of topical thrombin.  Ann Vasc Surg. 2004;  18 349-351
  • 59 Lawson J H, Lynn K A, Vanmatre R M et al.. Antihuman factor V antibodies after use of relatively pure bovine thrombin.  Ann Thorac Surg. 2005;  79 1037-1038

1 Average homology was determined by comparing the bovine sequences with the human counterparts of coagulation FIIa, FV, FVII, FVIII (A-chain), FIX, FX, FXII, tissue factor, and protein C using BlastP comparison, as previously described by Zhang and Madden. Genome Res 1997;7:649-656.

Jeffrey H LawsonM.D. Ph.D. 

Box 2622, MSRB, Department of Surgery

Duke University Medical Center, Durham, NC 27710

Email: lawso006@mc.duke.edu

    >