NOTARZT 2006; 22(2): 42-53
DOI: 10.1055/s-2006-932610
Leitlinien
© Georg Thieme Verlag KG Stuttgart · New York

European Resuscitation Council - Leitlinien für die Wiederbelebung 2005

Elektrische Therapie: Automatisierte externe Defibrillatoren, Defibrillation, Kardioversion und SchrittmachertherapieEuropean Resuscitation Council Guidelines for Resuscitation 2005Electrical Therapies: Automated External Defibrillators, Defibrillation, Cardioversion and PacingC.  D.  Deakin, J.  P.  NolanÜbersetzung von Prof. Dr. Hans Domanovits, Universitätsklinik für Notfallmedizin, Allgemeines Krankenhaus, Währinger Gürtel 18 - 20, 1090 Wien, Österreich, hans.domanovits@meduniwien.ac.at
Further Information

Publication History

Publication Date:
25 April 2006 (online)

Einleitung

Diese Darstellung legt die Leitlinien zur Defibrillation mit so genannten automatisierten externen Defibrillatoren (AED) und mit manuellen Defibrillatoren dar. Medizinisches Personal und auch Laienhelfer sind in der Lage, AEDs als einen integralen Bestandteil der Basisreanimation anzuwenden. Im Rahmen der erweiterten Wiederbelebung ist die manuelle Defibrillation Teil der Behandlung. Da bei vielen Defibrillatoren die synchronisierte Kardioversion und die Schrittmachertherapie (Pacing) zu den Grundfunktionen gehören, wird beides ebenfalls in diesem Kapitel abgehandelt.

Unter Defibrillation versteht man den Durchgang einer Strommenge durch das Myokard, die ausreicht, eine kritische Myokardmasse zu depolarisieren, und dadurch die Wiederherstellung einer geordneten elektrischen Aktivität ermöglicht. Die Defibrillation wird als Beendigung des Flimmerns definiert, oder - genauer gesagt - als das Fehlen von VF/VT 5 s nach der Abgabe des elektrischen Schocks; das Ziel einer Defibrillation ist die Wiederherstellung eines spontanen Kreislaufes.

Die Technologie der Defibrillatoren schreitet rasch voran. Bei den AEDs ist die Interaktion mit dem Retter mit Hilfe von gesprochenen Anweisungen eingeführt. Die weitere Entwicklung könnte noch genauere Anweisungen ermöglichen. Die Erkennung des Rhythmus unter laufender Wiederbelebung durch die Defibrillatoren ist erforderlich, um unnötige Verzögerungen bei den Wiederbelebungsmaßnahmen zu vermeiden. Die Auswertung der Flimmercharakteristik könnte es ermöglichen, den optimalen Zeitpunkt zu ermitteln, an dem ein Schock abgegeben werden sollte.

Literatur

  • 1 American Heart Association in collaboration with International Liaison Committee on Resuscitation . Guidelines 2000 for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care, Part 6: Advanced Cardiovascular Life Support: Section 2: Defibrillation.  Circulation. 2000;  102 (suppl) 190-214
  • 2 Larsen M P, Eisenberg M S, Cummins R O, Hallstrom A P. Predicting survival from out-of-hospital cardiac arrest: a graphic model.  Ann Emerg Med. 1993;  22 1652-1658
  • 3 Valenzuela T D, Roe D J, Cretin S, Spaite D W, Larsen M P. Estimating effectiveness of cardiac arrest interventions: a logistic regression survival model.  Circulation. 1997;  96 3308-3313
  • 4 Waalewijn R A, Vos R De, Tijssen J GP, Koster R W. Survival models for out-of-hospital cardiopulmonary resuscitation from the perspectives of the bystander, the first responder, and the paramedic.  Resuscitation. 2001;  51 113-122
  • 5 Myerburg R J, Fenster J, Velez M. et al . Impact of community-wide police car deployment of automated external defibrillators on survival from out-of-hospital cardiac arrest.  Circulation. 2002;  106 1058-1064
  • 6 Capucci A, Aschieri D, Piepoli M F, Bardy G H, Iconomu E, Arvedi M. Tripling survival from sudden cardiac arrest via early defibrillation without traditional education in cardiopulmonary resuscitation.  Circulation. 2002;  106 1065-1070
  • 7 Alem A P van, Vrenken R H, Vos R De, Tijssen J G, Koster R W. Use of automated external defibrillator by first responders in out of hospital cardiac arrest: prospective controlled trial.  BMJ. 2003;  327 1312
  • 8 Valenzuela T D, Bjerke H S, Clark L L. et al . Rapid defibrillation by nontraditional responders: the Casino Project.  Acad Emerg Med. 1998;  5 414-415
  • 9 Swor R A, Jackson R E, Cynar M. et al . Bystander CPR, ventricular fibrillation, and survival in witnessed, unmonitored out-of-hospital cardiac arrest.  Ann Emerg Med. 1995;  25 780-784
  • 10 Holmberg M, Holmberg S, Herlitz J. Effect of bystander cardiopulmonary resuscitation in out-of-hospital cardiac arrest patients in Sweden.  Resuscitation. 2000;  47 59-70
  • 11 Monsieurs K G, Handley A J, Bossaert L L. European Resuscitation Council Guidelines 2000 for Automated External Defibrillation. A statement from the Basic Life Support and Automated External Defibrillation Working Group(1) and approved by the Executive Committee of the European Resuscitation Council.  Resuscitation. 2001;  48 207-209
  • 12 Cummins R O, Eisenberg M, Bergner L, Murray J A. Sensitivity, accuracy, and safety of an automatic external defibrillator.  Lancet. 1984;  2 318-320
  • 13 Davis E A, Mosesso Jr V N. Performance of police first responders in utilizing automated external defibrillation on victims of sudden cardiac arrest.  Prehosp Emerg Care. 1998;  2 101-107
  • 14 White R D, Vukov L F, Bugliosi T F. Early defibrillation by police: initial experience with measurement of critical time intervals and patient outcome.  Ann Emerg Med. 1994;  23 1009-1013
  • 15 White R D, Hankins D G, Bugliosi T F. Seven years' experience with early defibrillation by police and paramedics in an emergency medical services system.  Resuscitation. 1998;  39 145-151
  • 16 Wik L, Kramer-Johansen J, Myklebust H. et al . Quality of cardiopulmonary resuscitation during out-of-hospital cardiac arrest.  JAMA. 2005;  293 299-304
  • 17 Abella B S, Alvarado J P, Myklebust H. et al . Quality of cardiopulmonary resuscitation during in-hospital cardiac arrest.  JAMA. 2005;  293 305-310
  • 18 Kerber R E, Becker L B, Bourland J D. et al . Automatic external defibrillators for public access defibrillation: recommendations for specifying and reporting arrhythmia analysis algorithm performance, incorporating new waveforms, and enhancing safety. A statement for health professionals from the American Heart Association Task Force on Automatic External Defibrillation, Subcommittee on AED Safety and Efficacy.  Circulation. 1997;  95 1677-1682
  • 19 Dickey W, Dalzell G W, Anderson J M, Adgey A A. The accuracy of decision-making of a semi-automatic defibrillator during cardiac arrest.  Eur Heart J. 1992;  13 608-615
  • 20 Atkinson E, Mikysa B, Conway J A. et al . Specificity and sensitivity of automated external defibrillator rhythm analysis in infants and children.  Ann Emerg Med. 2003;  42 185-196
  • 21 Cecchin F, Jorgenson D B, Berul C I. et al . Is arrhythmia detection by automatic external defibrillator accurate for children? Sensitivity and specificity of an automatic external defibrillator algorithm in 696 pediatric arrhythmias.  Circulation. 2001;  103 2483-2488
  • 22 Zafari A M, Zarter S K, Heggen V. et al . A program encouraging early defibrillation results in improved in-hospital resuscitation efficacy.  J Am Coll Cardiol. 2004;  44 846-852
  • 23 Destro A, Marzaloni M, Sermasi S, Rossi F. Automatic external defibrillators in the hospital as well?.  Resuscitation. 1996;  31 39-43
  • 24 Domanovits H, Meron G, Sterz F. et al . Successful automatic external defibrillator operation by people trained only in basic life support in a simulated cardiac arrest situation.  Resuscitation. 1998;  39 47-50
  • 25 Cusnir H, Tongia R, Sheka K P. et al . In hospital cardiac arrest: a role for automatic defibrillation.  Resuscitation. 2004;  63 183-188
  • 26 Kaye W, Mancini M E, Richards N. Organizing and implementing a hospital-wide first-responder automated external defibrillation program: strengthening the in-hospital chain of survival.  Resuscitation. 1995;  30 151-156
  • 27 Miller P H. Potential fire hazard in defibrillation.  JAMA. 1972;  221 192
  • 28 Hummel 3rd  R S, Ornato J P, Weinberg S M, Clarke A M. Spark-generating properties of electrode gels used during defibrillation. A potential fire hazard.  JAMA. 1988;  260 3021-3024
  • 29 Fires from defibrillation during oxygen administration.  Health Devices. 1994;  23 307-309
  • 30 Lefever J, Smith A. Risk of fire when using defibrillation in an oxygen enriched atmosphere.  Medical Devices Agency Safety Notices. 1995;  3 1-3
  • 31 Ward M E. Risk of fires when using defibrillators in an oxygen enriched atmosphere.  Resuscitation. 1996;  31 173
  • 32 Theodorou A A, Gutierrez J A, Berg R A. Fire attributable to a defibrillation attempt in a neonate.  Pediatrics. 2003;  112 677-679
  • 33 Kerber R E, Kouba C, Martins J. et al . Advance prediction of transthoracic impedance in human defibrillation and cardioversion: importance of impedance in determining the success of low-energy shocks.  Circulation. 1984;  70 303-308
  • 34 Kerber R E, Grayzel J, Hoyt R, Marcus M, Kennedy J. Transthoracic resistance in human defibrillation. Influence of body weight, chest size, serial shocks, paddle size and paddle contact pressure.  Circulation. 1981;  63 676-682
  • 35 Sado D M, Deakin C D, Petley G W, Clewlow F. Comparison of the effects of removal of chest hair with not doing so before external defibrillation on transthoracic impedance.  Am J Cardiol. 2004;  93 98-100
  • 36 Deakin C D, Sado D M, Petley G W, Clewlow F. Differential contribution of skin impedance and thoracic volume to transthoracic impedance during external defibrillation.  Resuscitation. 2004;  60 171-174
  • 37 Deakin C, Sado D, Petley G, Clewlow F. Determining the optimal paddle force for external defibrillation.  Am J Cardiol. 2002;  90 812-813
  • 38 Deakin C, Bennetts S, Petley G, Clewlow F. What is the optimal paddle force for paediatric defibrillation?.  Resuscitation. 2002;  55 59
  • 39 Panacek E A, Munger M A, Rutherford W F, Gardner S F. Report of nitropatch explosions complicating defibrillation.  Am J Emerg Med. 1992;  10 128-129
  • 40 Wrenn K. The hazards of defibrillation through nitroglycerin patches.  Ann Emerg Med. 1990;  19 1327-1328
  • 41 Pagan-Carlo L A, Spencer K T, Robertson C E, Dengler A, Birkett C, Kerber R E. Transthoracic defibrillation: importance of avoiding electrode placement directly on the female breast.  J Am Coll Cardiol. 1996;  27 449-452
  • 42 Deakin C D, Sado D M, Petley G W, Clewlow F. Is the orientation of the apical defibrillation paddle of importance during manual external defibrillation?.  Resuscitation. 2003;  56 15-18
  • 43 Kirchhof P, Borggrefe M, Breithardt G. Effect of electrode position on the outcome of cardioversion.  Card Electrophysiol Rev. 2003;  7 292-296
  • 44 Kirchhof P, Eckardt L, Loh P. et al . Anterior-posterior versus anterior-lateral electrode positions for external cardioversion of atrial fibrillation: a randomised trial.  Lancet. 2002;  360 1275-1279
  • 45 Botto G L, Politi A, Bonini W, Broffoni T, Bonatti R. External cardioversion of atrial fibrillation: role of paddle position on technical efficacy and energy requirements.  Heart. 1999;  82 726-730
  • 46 Alp N J, Rahman S, Bell J A, Shahi M. Randomised comparison of antero-lateral versus antero-posterior paddle positions for DC cardioversion of persistent atrial fibrillation.  Int J Cardiol. 2000;  75 211-216
  • 47 Mathew T P, Moore A, McIntyre M. et al . Randomised comparison of electrode positions for cardioversion of atrial fibrillation.  Heart. 1999;  81 576-579
  • 48 Walsh S J, McCarty D, McClelland A J. et al . Impedance compensated biphasic waveforms for transthoracic cardioversion of atrial fibrillation: a multi-centre comparison of antero-apical and antero-posterior pad positions.  Eur Heart J. 2005;  26 1292-1297
  • 49 Deakin C D, McLaren R M, Petley G W, Clewlow F, Dalrymple-Hay M J. Effects of positive end-expiratory pressure on transthoracic impedance - implications for defibrillation.  Resuscitation. 1998;  37 9-12
  • 50 American National Standard: Automatic External Defibrillators and Remote Controlled Defibrillators (DF39). Arlington, Virginia; Association for the Advancement of Medical Instrumentation 1993
  • 51 Deakin C D, McLaren R M, Petley G W, Clewlow F, Dalrymple-Hay M J. A comparison of transthoracic impedance using standard defibrillation paddles and self-adhesive defibrillation pads.  Resuscitation. 1998;  39 43-46
  • 52 Stults K R, Brown D D, Cooley F, Kerber R E. Self-adhesive monitor/defibrillation pads improve prehospital defibrillation success.  Ann Emerg Med. 1987;  16 872-877
  • 53 Kerber R E, Martins J B, Kelly K J. et al . Self-adhesive preapplied electrode pads for defibrillation and cardioversion.  J Am Coll Cardiol. 1984;  3 815-820
  • 54 Kerber R E, Martins J B, Ferguson D W. et al . Experimental evaluation and initial clinical application of new self-adhesive defibrillation electrodes.  Int J Cardiol. 1985;  8 57-66
  • 55 Perkins G D, Roberts C, Gao F. Delays in defibrillation: influence of different monitoring techniques.  Br J Anaesth. 2002;  89 405-408
  • 56 Bradbury N, Hyde D, Nolan J. Reliability of ECG monitoring with a gel pad/paddle combination after defibrillation.  Resuscitation. 2000;  44 203-206
  • 57 Chamberlain D. Gel pads should not be used for monitoring ECG after defibrillation.  Resuscitation. 2000;  43 159-160
  • 58 Callaway C W, Sherman L D, Mosesso Jr V N, Dietrich T J, Holt E, Clarkson M C. Scaling exponent predicts defibrillation success for out-of-hospital ventricular fibrillation cardiac arrest.  Circulation. 2001;  103 1656-1661
  • 59 Eftestol T, Sunde K, Aase S O, Husoy J H, Steen P A. Predicting outcome of defibrillation by spectral characterization and nonparametric classification of ventricular fibrillation in patients with out-of-hospital cardiac arrest.  Circulation. 2000;  102 1523-1529
  • 60 Eftestol T, Wik L, Sunde K, Steen P A. Effects of cardiopulmonary resuscitation on predictors of ventricular fibrillation defibrillation success during out-of-hospital cardiac arrest.  Circulation. 2004;  110 10-15
  • 61 Weaver W D, Cobb L A, Dennis D, Ray R, Hallstrom A P, Copass M K. Amplitude of ventricular fibrillation waveform and outcome after cardiac arrest.  Ann Intern Med. 1985;  102 53-55
  • 62 Brown C G, Dzwonczyk R. Signal analysis of the human electrocardiogram during ventricular fibrillation: frequency and amplitude parameters as predictors of successful countershock.  Ann Emerg Med. 1996;  27 184-188
  • 63 Callaham M, Braun O, Valentine W, Clark D M, Zegans C. Prehospital cardiac arrest treated by urban first-responders: profile of patient response and prediction of outcome by ventricular fibrillation waveform.  Ann Emerg Med. 1993;  22 1664-1677
  • 64 Strohmenger H U, Lindner K H, Brown C G. Analysis of the ventricular fibrillation ECG signal amplitude and frequency parameters as predictors of countershock success in humans.  Chest. 1997;  111 584-589
  • 65 Strohmenger H U, Eftestol T, Sunde K. et al . The predictive value of ventricular fibrillation electrocardiogram signal frequency and amplitude variables in patients with out-of-hospital cardiac arrest.  Anesth Analg. 2001;  93 1428-1433
  • 66 Podbregar M, Kovacic M, Podbregar-Mars A, Brezocnik M. Predicting defibrillation success by „genetic” programming in patients with out-of-hospital cardiac arrest.  Resuscitation. 2003;  57 153-159
  • 67 Menegazzi J J, Callaway C W, Sherman L D. et al . Ventricular fibrillation scaling exponent can guide timing of defibrillation and other therapies.  Circulation. 2004;  109 926-931
  • 68 Povoas H P, Weil M H, Tang W, Bisera J, Klouche K, Barbatsis A. Predicting the success of defibrillation by electrocardiographic analysis.  Resuscitation. 2002;  53 77-82
  • 69 Noc M, Weil M H, Tang W, Sun S, Pernat A, Bisera J. Electrocardiographic prediction of the success of cardiac resuscitation.  Crit Care Med. 1999;  27 708-714
  • 70 Strohmenger H U, Lindner K H, Keller A, Lindner I M, Pfenninger E G. Spectral analysis of ventricular fibrillation and closed-chest cardiopulmonary resuscitation.  Resuscitation. 1996;  33 155-161
  • 71 Noc M, Weil M H, Gazmuri R J, Sun S, Biscera J, Tang W. Ventricular fibrillation voltage as a monitor of the effectiveness of cardiopulmonary resuscitation.  J Lab Clin Med. 1994;  124 421-426
  • 72 Lightfoot C B, Nremt P, Callaway C W. et al . Dynamic nature of electrocardiographic waveform predicts rescue shock outcome in porcine ventricular fibrillation.  Ann Emerg Med. 2003;  42 230-241
  • 73 Marn-Pernat A, Weil M H, Tang W, Pernat A, Bisera J. Optimizing timing of ventricular defibrillation.  Crit Care Med. 2001;  29 2360-2365
  • 74 Hamprecht F A, Achleitner U, Krismer A C. et al . Fibrillation power, an alternative method of ECG spectral analysis for prediction of countershock success in a porcine model of ventricular fibrillation.  Resuscitation. 2001;  50 287-296
  • 75 Amann A, Achleitner U, Antretter H. et al . Analysing ventricular fibrillation ECG-signals and predicting defibrillation success during cardiopulmonary resuscitation employing N(alpha)-histograms.  Resuscitation. 2001;  50 77-85
  • 76 Brown C G, Griffith R F, Ligten P Van. et al . Median frequency - a new parameter for predicting defibrillation success rate.  Ann Emerg Med. 1991;  20 787-789
  • 77 Amann A, Rheinberger K, Achleitner U. et al . The prediction of defibrillation outcome using a new combination of mean frequency and amplitude in porcine models of cardiac arrest.  Anesth Analg. 2002;  95 716-722
  • 78 Cobb L A, Fahrenbruch C E, Walsh T R. et al . Influence of cardiopulmonary resuscitation prior to defibrillation in patients with out-of-hospital ventricular fibrillation.  JAMA. 1999;  281 1182-1188
  • 79 Wik L, Hansen T B, Fylling F. et al . Delaying defibrillation to give basic cardiopulmonary resuscitation to patients with out-of-hospital ventricular fibrillation: a randomized trial.  JAMA. 2003;  289 1389-1395
  • 80 Jacobs I G, Finn J C, Oxer H F, Jelinek G A. CPR before defibrillation in out-of-hospital cardiac arrest: a randomized trial.  Emerg Med Australas. 2005;  17 39-45
  • 81 Berg R A, Hilwig R W, Kern K B, Ewy G A. Precountershock cardiopulmonary resuscitation improves ventricular fibrillation median frequency and myocardial readiness for successful defibrillation from prolonged ventricular fibrillation: a randomized, controlled swine study.  Ann Emerg Med. 2002;  40 563-570
  • 82 Berg R A, Hilwig R W, Ewy G A, Kern K B. Precountershock cardiopulmonary resuscitation improves initial response to defibrillation from prolonged ventricular fibrillation: a randomized, controlled swine study.  Crit Care Med. 2004;  32 1352-1357
  • 83 Kolarova J, Ayoub I M, Yi Z, Gazmuri R J. Optimal timing for electrical defibrillation after prolonged untreated ventricular fibrillation.  Crit Care Med. 2003;  31 2022-2028
  • 84 Berg R A, Sanders A B, Kern K B. et al . Adverse hemodynamic effects of interrupting chest compressions for rescue breathing during cardiopulmonary resuscitation for ventricular fibrillation cardiac arrest.  Circulation. 2001;  104 2465-2470
  • 85 Kern K B, Hilwig R W, Berg R A, Sanders A B, Ewy G A. Importance of continuous chest compressions during cardiopulmonary resuscitation: improved outcome during a simulated single lay-rescuer scenario.  Circulation. 2002;  105 645-649
  • 86 Yu T, Weil M H, Tang W. et al . Adverse outcomes of interrupted precordial compression during automated defibrillation.  Circulation. 2002;  106 368-372
  • 87 Eftestol T, Sunde K, Steen P A. Effects of interrupting precordial compressions on the calculated probability of defibrillation success during out-of-hospital cardiac arrest.  Circulation. 2002;  105 2270-2273
  • 88 Valenzuela T D, Kern K B, Clark L L. et al . Interruptions of chest compressions during emergency medical systems resuscitation.  Circulation. 2005;  112 1259-1265
  • 89 Alem A P van, Sanou B T, Koster R W. Interruption of cardiopulmonary resuscitation with the use of the automated external defibrillator in out-of-hospital cardiac arrest.  Ann Emerg Med. 2003;  42 449-457
  • 90 Bain A C, Swerdlow C D, Love C J. et al . Multicenter study of principles-based waveforms for external defibrillation.  Ann Emerg Med. 2001;  37 5-12
  • 91 Poole J E, White R D, Kanz K G. et al . Low-energy impedance-compensating biphasic waveforms terminate ventricular fibrillation at high rates in victims of out-of-hospital cardiac arrest. LIFE Investigators.  J Cardiovasc Electrophysiol. 1997;  8 1373-1385
  • 92 Schneider T, Martens P R, Paschen H. et al . Multicenter, randomized, controlled trial of 150-J biphasic shocks compared with 200- to 360-J monophasic shocks in the resuscitation of out-of-hospital cardiac arrest victims. Optimized Response to Cardiac Arrest (ORCA) Investigators.  Circulation. 2000;  102 1780-1787
  • 93 Rea T D, Shah S, Kudenchuk P J, Copass M K, Cobb L A. Automated external defibrillators: to what extent does the algorithm delay CPR?.  Ann Emerg Med. 2005;  46 132-141
  • 94 Hess E P, White R D. Ventricular fibrillation is not provoked by chest compression during post-shock organized rhythms in out-of-hospital cardiac arrest.  Resuscitation. 2005;  66 7-11
  • 95 Joglar J A, Kessler D J, Welch P J. et al . Effects of repeated electrical defibrillations on cardiac troponin I levels.  Am J Cardiol. 1999;  83 270-272, A6
  • 96 Alem A P van, Chapman F W, Lank P, Hart A A, Koster R W. A prospective, randomised and blinded comparison of first shock success of monophasic and biphasic waveforms in out-of-hospital cardiac arrest.  Resuscitation. 2003;  58 17-24
  • 97 Carpenter J, Rea T D, Murray J A, Kudenchuk P J, Eisenberg M S. Defibrillation waveform and post-shock rhythm in out-of-hospital ventricular fibrillation cardiac arrest.  Resuscitation. 2003;  59 189-196
  • 98 Morrison L J, Dorian P, Long J. et al . Out-of-hospital cardiac arrest rectilinear biphasic to monophasic damped sine defibrillation waveforms with advanced life support intervention trial (ORBIT).  Resuscitation. 2005;  66 149-157
  • 99 Kerber R E, Martins J B, Kienzle M G. et al . Energy, current, and success in defibrillation and cardioversion: clinical studies using an automated impedance-based method of energy adjustment.  Circulation. 1988;  77 1038-1046
  • 100 Koster R W, Dorian P, Chapman F W, Schmitt P W, O'Grady S G, Walker R G. A randomized trial comparing monophasic and biphasic waveform shocks for external cardioversion of atrial fibrillation.  Am Heart J. 2004;  147 e20
  • 101 Martens P R, Russell J K, Wolcke B. et al . Optimal Response to Cardiac Arrest study: defibrillation waveform effects.  Resuscitation. 2001;  49 233-243
  • 102 Weaver W D, Cobb L A, Copass M K, Hallstrom A P. Ventricular defibrillation: a comparative trial using 175-J and 320-J shocks.  N Engl J Med. 1982;  307 1101-1106
  • 103 Tang W, Weil M H, Sun S. et al . The effects of biphasic and conventional monophasic defibrillation on postresuscitation myocardial function.  J Am Coll Cardiol. 1999;  34 815-822
  • 104 Gliner B E, Jorgenson D B, Poole J E. et al . Treatment of out-of-hospital cardiac arrest with a low-energy impedance-compensating biphasic waveform automatic external defibrillator. The LIFE Investigators.  Biomed Instrum Technol. 1998;  32 631-644
  • 105 White R D, Blackwell T H, Russell J K, Snyder D E, Jorgenson D B. Transthoracic impedance does not affect defibrillation, resuscitation or survival in patients with out-of-hospital cardiac arrest treated with a non-escalating biphasic waveform defibrillator.  Resuscitation. 2005;  64 63-69
  • 106 Kuisma M, Suominen P, Korpela R. Paediatric out-of-hospital cardiac arrests: epidemiology and outcome.  Resuscitation. 1995;  30 141-150
  • 107 Sirbaugh P E, Pepe P E, Shook J E. et al . A prospective, population-based study of the demographics, epidemiology, management, and outcome of out-of-hospital pediatric cardiopulmonary arrest.  Ann Emerg Med. 1999;  33 174-184
  • 108 Hickey R W, Cohen D M, Strausbaugh S, Dietrich A M. Pediatric patients requiring CPR in the prehospital setting.  Ann Emerg Med. 1995;  25 495-501
  • 109 Appleton G O, Cummins R O, Larson M P, Graves J R. CPR and the single rescuer: at what age should you „call first” rather than „call fast”?.  Ann Emerg Med. 1995;  25 492-494
  • 110 Ronco R, King W, Donley D K, Tilden S J. Outcome and cost at a children's hospital following resuscitation for out-of-hospital cardiopulmonary arrest.  Arch Pediatr Adolesc Med. 1995;  149 210-214
  • 111 Losek J D, Hennes H, Glaeser P, Hendley G, Nelson D B. Prehospital care of the pulseless, nonbreathing pediatric patient.  Am J Emerg Med. 1987;  5 370-374
  • 112 Mogayzel C, Quan L, Graves J R, Tiedeman D, Fahrenbruch C, Herndon P. Out-of-hospital ventricular fibrillation in children and adolescents: causes and outcomes.  Ann Emerg Med. 1995;  25 484-491
  • 113 Safranek D J, Eisenberg M S, Larsen M P. The epidemiology of cardiac arrest in young adults.  Ann Emerg Med. 1992;  21 1102-1106
  • 114 Berg R A, Chapman F W, Berg M D. et al . Attenuated adult biphasic shocks compared with weight-based monophasic shocks in a swine model of prolonged pediatric ventricular fibrillation.  Resuscitation. 2004;  61 189-197
  • 115 Tang W, Weil M H, Jorgenson D. et al . Fixed-energy biphasic waveform defibrillation in a pediatric model of cardiac arrest and resuscitation.  Crit Care Med. 2002;  30 2736-2741
  • 116 Clark C B, Zhang Y, Davies L R, Karlsson G, Kerber R E. Pediatric transthoracic defibrillation: biphasic versus monophasic waveforms in an experimental model.  Resuscitation. 2001;  51 159-163
  • 117 Gurnett C A, Atkins D L. Successful use of a biphasic waveform automated external defibrillator in a high-risk child.  Am J Cardiol. 2000;  86 1051-1053
  • 118 Atkins D L, Jorgenson D B. Attenuated pediatric electrode pads for automated external defibrillator use in children.  Resuscitation. 2005;  66 31-37
  • 119 Gutgesell H P, Tacker W A, Geddes L A, Davis S, Lie J T, McNamara D G. Energy dose for ventricular defibrillation of children.  Pediatrics. 1976;  58 898-901
  • 120 Cummins R O, Austin Jr D. The frequency of „occult” ventricular fibrillation masquerading as a flat line in prehospital cardiac arrest.  Ann Emerg Med. 1988;  17 813-817
  • 121 Losek J D, Hennes H, Glaeser P W, Smith D S, Hendley G. Prehospital countershock treatment of pediatric asystole.  Am J Emerg Med. 1989;  7 571-575
  • 122 Martin D R, Gavin T, Bianco J. et al . Initial countershock in the treatment of asystole.  Resuscitation. 1993;  26 63-68
  • 123 Kohl P, King A M, Boulin C. Antiarrhythmic effects of acute mechanical stimulation. In: Kohl P, Sachs F, Franz MR (eds) Cardiac mechano-electric feedback and arrhythmias: form pipette to patient. Philadelphia; Elsevier Saunders 2005: 304-314
  • 124 Befeler B. Mechanical Stimulation of The Heart; Its Therapeutic Value in Tachyarrhythmias.  Chest. 1978;  73 832-838
  • 125 Volkmann H KA, Kühnert H, Paliege R, Dannberg G, Siegert K. Terminierung von Kammertachykardien durch mechanische Herzstimulation mit Präkordialschlägen. („Termination of Ventricular Tachycardias by Mechanical Cardiac Pacing by Means of Precordial Thumps.”).  Zeitschrift für Kardiologie. 1990;  79 717-724
  • 126 Caldwell G, Millar G, Quinn E. Simple mechanical methods for cardioversion: Defence of the precordial thump and cough version.  British Medical Journal. 1985;  291 627-630
  • 127 Morgera T, Baldi N, Chersevani D, Medugno G, Camerini F. Chest thump and ventricular tachycardia.  Pacing Clin Electrophysiol. 1979;  2 69-75
  • 128 Rahner E, Zeh E. Die Regularisierung von Kammertachykardien durch präkordialen Faustschlag. („The Regularization of Ventricular Tachycardias by Precordial Thumping.”).  Medizinische Welt. 1978;  29 1659-1663
  • 129 Gertsch M, Hottinger S, Hess T. Serial chest thumps for the treatment of ventricular tachycardia in patients with coronary artery disease.  Clin Cardiol. 1992;  15 181-188
  • 130 Krijne R. Rate Acceleration of Ventricular Tachycardia After a Precordial Chest Thump.  The American Journal Of Cardiology. 1984;  53 964-965
  • 131 Sclarovsky S, Kracoff O H, Agmon J. Acceleration of ventricular tachycardia induced by a chest thump.  Chest. 1981;  80 596-599
  • 132 Yakaitis R W, Redding J S. Precordial thumping during cardiac resuscitation.  Crit Care Med. 1973;  1 22-26
  • 133 Lown B. Electrical reversion of cardiac arrhythmias.  Br Heart J. 1967;  29 469-489
  • 134 Mittal S, Ayati S, Stein K M. et al . Transthoracic cardioversion of atrial fibrillation: comparison of rectilinear biphasic versus damped sine wave monophasic shocks.  Circulation. 2000;  101 1282-1287
  • 135 Page R L, Kerber R E, Russell J K. et al . Biphasic versus monophasic shock waveform for conversion of atrial fibrillation: the results of an international randomized, double-blind multicenter trial.  J Am Coll Cardiol. 2002;  39 1956-1963
  • 136 Joglar J A, Hamdan M H, Ramaswamy K. et al . Initial energy for elective external cardioversion of persistent atrial fibrillation.  Am J Cardiol. 2000;  86 348-350
  • 137 Alatawi F, Gurevitz O, White R. Prospective, randomized comparison of two biphasic waveforms for the efficacy and safety of transthoracic biphasic cardioversion of atrial fibrillation.  Heart Rhythm. 2005;  2 382-387
  • 138 Pinski S L, Sgarbossa E B, Ching E, Trohman R G. A comparison of 50-J versus 100-J shocks for direct-current cardioversion of atrial flutter.  Am Heart J. 1999;  137 439-442
  • 139 Kerber R E, Kienzle M G, Olshansky B. et al . Ventricular tachycardia rate and morphology determine energy and current requirements for transthoracic cardioversion.  Circulation. 1992;  85 158-163
  • 140 Hedges J R, Syverud S A, Dalsey W C, Feero S, Easter R, Shultz B. Prehospital trial of emergency transcutaneous cardiac pacing.  Circulation. 1987;  76 1337-1343
  • 141 Barthell E, Troiano P, Olson D, Stueven H A, Hendley G. Prehospital external cardiac pacing: a prospective, controlled clinical trial.  Ann Emerg Med. 1988;  17 1221-1226
  • 142 Cummins R O, Graves J R, Larsen M P. et al . Out-of-hospital transcutaneous pacing by emergency medical technicians in patients with asystolic cardiac arrest.  N Engl J Med. 1993;  328 1377-1382
  • 143 Ornato J P, Peberdy M A. The mystery of bradyasystole during cardiac arrest.  Ann Emerg Med. 1996;  27 576-587
  • 144 Niemann J T, Adomian G E, Garner D, Rosborough J P. Endocardial and transcutaneous cardiac pacing, calcium chloride, and epinephrine in postcountershock asystole and bradycardias.  Crit Care Med. 1985;  13 699-704
  • 145 Quan L, Graves J R, Kinder D R, Horan S, Cummins R O. Transcutaneous cardiac pacing in the treatment of out-of-hospital pediatric cardiac arrests.  Ann Emerg Med. 1992;  21 905-909
  • 146 Dalsey W C, Syverud S A, Hedges J R. Emergency department use of transcutaneous pacing for cardiac arrests.  Crit Care Med. 1985;  13 399-401
  • 147 Knowlton A A, Falk R H. External cardiac pacing during in-hospital cardiac arrest.  Am J Cardiol. 1986;  57 1295-1298
  • 148 Ornato J P, Carveth W L, Windle J R. Pacemaker insertion for prehospital bradyasystolic cardiac arrest.  Ann Emerg Med. 1984;  13 101-103

Dr. rer. nat. Dr. med. Burkhard Dirks

Sektion Notfallmedizin · Universitätsklinik für Anästhesiologie · Universitätsklinikum Ulm

Prittwitzstraße 43

89075 Ulm

Email: burkhard.dirks@uni-ulm.de