Z Gastroenterol 2006; 44(7): 573-586
DOI: 10.1055/s-2006-926795
Übersicht

© Karl Demeter Verlag im Georg Thieme Verlag KG Stuttgart · New York

Gastrointestinal Tumors: Metastasis and Tetraspanins

Malignome des Magen-Darm-Traktes: Metastasierung und TetraspanineM. Zöller1
  • 1Department of Tumor Progression and Immune Defense, German Cancer Research Center, Heidelberg, Germany
Further Information

Publication History

manuscript received: 20.3.2006

manuscript accepted: 24.4.2006

Publication Date:
05 July 2006 (online)

Zusammenfassung

Tumoren des Magen-Darm-Traktes unter Einschluss von Malignomen des Magens, des Kolorektum, der Leber und des Pankreas umfassen weltweit über 50 % aller Tumoren. Die 5-Jahres-Überlebensrate schwankt zwischen über 50 % bei kolorektalen Tumoren und liegt unter 1 % beim Pankreaskarzinom, wobei Überlebenszeit und Sterblichkeitsrate bei Tumoren des Magen-Darm-Traktes in direkter Korrelation mit der Metastasierungskapazität stehen. Tetraspanine sind eine relativ neue Familie von Membranproteinen, die vornehmlich über die Bildung von Komplexen mit weiteren Tetraspaninen und einer Vielzahl weiterer Molekülfamilien agieren und diese in definierten Membrandomänen zusammenführen. Diese lipidreichen Membrandomänen sind in spezieller Weise zur Initiation von Signaltransduktionskaskaden geeignet. Komplexbildung, die Generierung einer Plattform für Signaltransduktion und ihrer Eigenschaft präferenziell in Vesikelform, sog. Exosomen, von der Tumorzelle freigesetzt zu werden, prädestinieren Tetraspanine für eine zentrale Rolle bei allen Schritten der Metastasierungskaskade. In Anbetracht dieser multiplen Involvierung der Tetraspanine in den Metastasierungsprozess und eines sich in den letzten Jahren zunehmend experimentell festigenden Konzepts zum Prozess der Metastasierung sind diesem kurzen Überblick über die Funktion von Tetraspaninen, die aus heutiger Sicht zentralen Elemente der Tumorprogression, reversible Differenzierung von Tumorstammzellen und Bedeutung der Tumor-Wirt-Beziehung, vorangestellt.

Abstract

Tumors of the gastrointestinal tract - gastric, colorectal, pancreatic and liver tumors - account for over 50 % of cancer worldwide. The 5-year survival rate varies from > 50 % in colorectal to < 1 % in pancreatic cancer. The high cancer death rate strikingly correlates with the high metastasizing capacity of most gastrointestinal tumors. Therefore and because during the last decade several important hypotheses on metastasis formation could be settled on solid experimental ground, this review will first provide a brief outline on the currently most accepted view of tumor progression and then discuss whether and how the rather new family of tetraspanin molecules might contribute to cancer progression. Notably, some members of this family, in particular, CD82/KAI1 are known as metastasis suppressor genes, while others like CD151 and CO-029 are supposed to promote metastasis formation. The underlying mechanisms are beginning to become unraveled. Tetraspanins assemble complexes of different tetraspanins, integrins and additional transmembrane molecules in microdomains that serve as signaling platform. By creating proximity, tetraspanins modulate functional activity of the associating molecules. In addition, tetraspanins actively contribute to the intracellular traffic of the associating molecules that includes vesicular budding and formation of exosomes that are particularly rich in tetraspanins. Accordingly, the association of certain tetraspanins with the metastatic phenotype as well as the definition of other tetraspanins as metastasis suppressor genes has to be viewed from the perspective of molecular complexes rather than the individual tetraspanin.

References

  • 1 Shang J, Pena A S. Multidisciplinary approach to understand the pathogenesis of gastric cancer.  World J Gastroenterol. 2005;  11 4131-4139
  • 2 Moehler M, Teufel A, Galle P R. New chemotherapeutic strategies in colorectal cancer.  Recent Results Cancer Res. 2005;  165 250-259
  • 3 Thomas M B, Abbruzzese J L. Opportunities for targeted therapies in hepatocellular carcinoma.  J Clin Oncol. 2005;  23 8093-8108
  • 4 Keleg S, Büchler P, Ludwig R. et al . Invasion and metastasis in pancreatic cancer.  Mol Cancer. 2003;  2 14
  • 5 Dixon E, Vollmer Jr C M, Sahajpal A. et al . An aggressive surgical approach leads to improved survival in patients with gallbladder cancer: a 12-year study at a North American Center.  Ann Surg. 2005;  241 385-394
  • 6 Liotta L A, Kohn E C. The microenvironment of the tumour-host interface.  Nature. 2001;  411 375-379
  • 7 Fidler I J. The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited.  Nat Rev Cancer. 2003;  3 453-458
  • 8 Auerbach R. Patterns of tumor metastasis: organ selectivity in the spread of cancer cells.  Lab Invest. 1988;  58 361-364
  • 9 Sell S, Pierce G B. Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers.  Lab Invest. 1994;  70 6-22
  • 10 Damjanov I, Solter D. Embryo-derived teratocarcinomas elicit splenomegaly in syngeneic host.  Nature. 1974;  249 569-571
  • 11 Fialkow P J, Martin P J, Najfeld V. et al . Evidence for a multistep pathogenesis of chronic myelogenous leukemia.  Blood. 1981;  58 158-163
  • 12 Müller A, Homey B, Soto H. et al . Involvement of chemokine receptors in breast cancer metastasis.  Nature. 2001;  410 50-56
  • 13 Prindull G, Zipori D. Environmental guidance of normal and tumor cell plasticity: epithelial mesenchymal transitions as a paradigm.  Blood. 2004;  103 2892-2899
  • 14 Blau H M, Brazelton T R, Weimann J M. The evolving concept of a stem cell: entity or function?.  Cell. 2001;  105 829-841
  • 15 Quesenberry P J, Colvin G A, Lambert J F. The chiaroscuro stem cell: a unified stem cell theory.  Blood. 2002;  100 4266-4271
  • 16 Thiery J P. Epithelial-mesenchymal transitions in development and pathologies.  Curr Opin Cell Biol. 2003;  15 740-746
  • 17 Jechlinger M, Grunert S, Beug H. Mechanisms in epithelial plasticity and metastasis: insights from 3D cultures and expression profiling.  J Mammary Gland Biol Neoplasia. 2002;  7 415-432
  • 18 Oft M, Akhurst R J, Balmain A. Metastasis is driven by sequential elevation of H-ras and Smad2 levels.  Nat Cell Biol. 2002;  4 487-494
  • 19 Huber M A, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression.  Curr Opin Cell Biol. 2005;  17 548-558
  • 20 Schramek H, Feifel E, Marschitz I. et al . Loss of active MEK1-ERK1/2 restores epithelial phenotype and morphogenesis in transdifferentiated MDCK cells.  Am J Physiol Cell Physiol. 2003;  285 C652-661
  • 21 Janda E, Lehmann K, Killisch I. et al . Ras and TGF(beta) cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways.  J Cell Biol. 2002;  156 299-313
  • 22 Yamashita S, Miyagi C, Fukada T. et al . Zinc transporter LIVI controls epithelial-mesenchymal transition in zebrafish gastrula organizer.  Nature. 2004;  429 298-302
  • 23 Cano A, Perez-Moreno M A, Rodrigo I. et al . The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression.  Nat Cell Biol. 2000;  2 76-83
  • 24 Prindull G. Hypothesis: cell plasticity, linking embryonal stem cells to adult stem cell reservoirs and metastatic cancer cells?.  Exp Hematol. 2005;  33 738-746
  • 25 Nelson W J, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways.  Science. 2004;  303 1483-1487
  • 26 Nieto M A. The snail superfamily of zinc-finger transcription factors.  Nat Rev Mol Cell Biol. 2002;  3 155-166
  • 27 Yang J, Mani S A, Donaher J L. et al . Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis.  Cell. 2004;  117 927-939
  • 28 Huber M A, Azoitei N, Baumann B. et al . NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression.  J Clin Invest. 2004;  114 569-581
  • 29 Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression.  Nat Rev Cancer. 2002;  2 161-174
  • 30 Grunert S, Jechlinger M, Beug H. Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis.  Nat Rev Mol Cell Biol. 2003;  4 657-665
  • 31 Brabletz T, Jung A, Spaderna S. et al . Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression.  Nat Rev Cancer. 2005;  5 744-749
  • 32 Linares-Cruz G, Bruzzoni-Giovanelli H, Alvaro V. et al . p21WAF-1 reorganizes the nucleus in tumor suppression.  Proc Natl Acad Sci USA. 1998;  95 1131-1135
  • 33 Portella G, Cumming S A, Liddell J. et al . Transforming growth factor beta is essential for spindle cell conversion of mouse skin carcinoma in vivo: implications for tumor invasion.  Cell Growth Differ. 1998;  9 393-404
  • 34 Rosivatz E, Becker I, Specht K. et al . Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, and twist in gastric cancer.  Am J Pathol. 2002;  161 1881-1891
  • 35 Nakajima S, Doi R, Toyoda E. et al . N-cadherin expression and epithelial-mesenchymal transition in pancreatic carcinoma.  Clin Cancer Res. 2004;  10 4125-4133
  • 36 Holtzer H, Biehl J, Yeoh G. et al . Effect of oncogenic virus on muscle differentiation.  Proc Natl Acad Sci USA. 1975;  72 4051-4055
  • 37 Tapscott S J. The circuitry of a master switch: Myod and the regulation of skeletal muscle gene transcription.  Development. 2005;  132 2685-2695
  • 38 de la Serna I L, Ohkawa Y, Berkes C A. et al . MyoD targets chromatin remodeling complexes to the myogenin locus prior to forming a stable DNA-bound complex.  Mol Cell Biol. 2005;  25 3997-4009
  • 39 Gangenahalli G U, Gupta P, Saluja D. et al . Stem cell fate specification: role of master regulatory switch transcription factor PU.1 in differential hematopoiesis.  Stem Cells Dev. 2005;  14 140-152
  • 40 Kim L, Kimmel A R. GSK3, a master switch regulating cell-fate specification and tumorigenesis.  Curr Opin Genet Dev. 2000;  10 508-514
  • 41 Kang Y, Massague J. Epithelial-mesenchymal transitions: twist in development and metastasis.  Cell. 2004;  118 277-279
  • 42 Mareel M M, Van Roy F M, Bracke M E. How and when do tumor cells metastasize?.  Crit Rev Oncog. 1993;  4 559-594
  • 43 Killion J J, Radinsky R, Fidler I J. Orthotopic models are necessary to predict therapy of transplantable tumors in mice.  Cancer Metastasis Rev. 1998 - 99; 
  • 44 Wyckoff J B, Jones J G, Condeelis J S. et al . A critical step in metastasis: in vivo analysis of intravasation at the primary tumor.  Cancer Res. 2000;  60 2504-2511
  • 45 Schedin P, Elias A. Multistep tumorigenesis and the microenvironment.  Breast Cancer Res. 2004;  6 93-101
  • 46 Werb Z. ECM and cell surface proteolysis: regulating cellular ecology.  Cell. 1997;  91 439-442
  • 47 Coussens L M, Tinkle C L, Hanahan D. et al . MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis.  Cell. 2000;  103 481-490
  • 48 Tomakidi P, Mirancea N, Fusenig N E. et al . Defects of basement membrane and hemidesmosome structure correlate with malignant phenotype and stromal interactions in HaCaT-Ras xenografts.  Differentiation. 1999;  64 263-275
  • 49 Park C C, Bissell M J, Barcellos-Hoff M H. The influence of the microenvironment on the malignant phenotype.  Mol Med Today. 2000;  6 324-329
  • 50 Micke P, Ostman A. Tumour-stroma interaction: cancer-associated fibroblasts as novel targets in anti-cancer therapy?.  Lung Cancer. 2004;  45 (Suppl 2) S163-175
  • 51 Menke A, Adler G. TGFbeta-induced fibrogenesis of the pancreas.  Int J Gastrointest Cancer. 2002;  31 41-46
  • 52 Berger J C, Vander Griend D J, Robinson V L. et al . Metastasis suppressor genes: from gene identification to protein function and regulation.  Cancer Biol Ther. 2005;  4 (8) Epub ahead of print
  • 53 Keller E T, Fu Z, Brennan M. The biology of a prostate cancer metastasis suppressor protein: Raf kinase inhibitor protein.  J Cell Biochem. 2005;  94 273-278
  • 54 Bissell M J, Radisky D. Putting tumours in context.  Nat Rev Cancer. 2001;  1 46-54
  • 55 Mercurio A M, Rabinovitz I. Towards a mechanistic understanding of tumor invasion - lessons from the alpha6beta 4 integrin.  Semin Cancer Biol. 2001;  11 129-141
  • 56 Sheppard D. Integrin-mediated activation of latent transforming growth factor beta.  Cancer Metastasis Rev. 2005;  24 395-402
  • 57 Webb D J, Parsons J T, Horwitz A F. Adhesion assembly, disassembly and turnover in migrating cells - over and over and over again.  Nat Cell Biol. 2002;  4 E97-100
  • 58 Dai C, Celestino J C, Okada Y. et al . PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo.  Genes Dev. 2001;  15 1913-1925
  • 59 Brooks P C, Stromblad S, Sanders L C. et al . Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3.  Cell. 1996;  85 683-693
  • 60 Blasi F, Carmeliet P. uPAR: a versatile signalling orchestrator.  Nat Rev Mol Cell Biol. 2002;  3 932-943
  • 61 Lipscomb E A, Mercurio A M. Mobilization and activation of a signaling competent alpha6beta4integrin underlies its contribution to carcinoma progression.  Cancer Metastasis Rev. 2005;  24 413-423
  • 62 Moos M, Tacke R, Scherer H. et al . Neural adhesion molecule L1 as a member of the immunoglobulin superfamily with binding domains similar to fibronectin.  Nature. 1988;  334 701-703
  • 63 Konstantopoulos K, Hanley W D, Wirtz D. Receptor-ligand binding: “catch” bonds finally caught.  Curr Biol. 2003;  13 R611-613
  • 64 Witz I P. The involvement of selectins and their ligands in tumor-progression.  Immunol Lett. 2005;  104 89-93
  • 65 Naor D, Sionov R V, Ish-Shalom D. CD44: structure, function, and association with the malignant process.  Adv Cancer Res. 1997;  71 241-319
  • 66 Ponta H, Sherman L, Herrlich P A. CD44: from adhesion molecules to signalling regulators.  Nat Rev Mol Cell Biol. 2003;  4 33-45
  • 67 Marhaba R, Zöller M. CD44 in cancer progression: adhesion, migration and growth regulation.  J Mol Histol. 2004;  35 211-231
  • 68 Günthert U, Hofmann M, Rudy W. et al . A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells.  Cell. 1991;  65 13-24
  • 69 Günthert U. CD44 in malignant disorders.  Curr Top Microbiol Immunol. 1996;  213 271-285
  • 70 Hagedorn H G, Bachmeier B E, Nerlich A G. Synthesis and degradation of basement membranes and extracellular matrix and their regulation by TGF-beta in invasive carcinomas.  Int J Oncol. 2001;  18 669-681
  • 71 Skrzydlewska E, Sulkowska M, Koda M. et al . Proteolytic-antiproteolytic balance and its regulation in carcinogenesis.  World J Gastroenterol. 2005;  11 1251-1266
  • 72 Werb Z, Vu T H, Rinkenberger J L. et al . Matrix-degrading proteases and angiogenesis during development and tumor formation.  APMIS. 1999;  107 11-18
  • 73 McCawley L J, Matrisian L M. Matrix metalloproteinases: they’re not just for matrix anymore!.  Curr Opin Cell Biol. 2001;  13 534-540
  • 74 Murphy G, Stanton H, Cowell S. et al . Mechanisms for pro matrix metalloproteinase activation.  APMIS. 1999;  107 38-44
  • 75 Lambert E, Dasse E, Haye B. et al . TIMPs as multifacial proteins.  Crit Rev Oncol Hematol. 2004;  49 187-198
  • 76 Sidenius N, Blasi F. The urokinase plasminogen activator system in cancer: recent advances and implication for prognosis and therapy.  Cancer Metastasis Rev. 2003;  22 205-222
  • 77 Ploug M. Structure-function relationships in the interaction between the urokinase-type plasminogen activator and its receptor.  Curr Pharm Des. 2003;  9 1499-1528
  • 78 Dellas C, Loskutoff D J. Historical analysis of PAI-1 from its discovery to its potential role in cell motility and disease.  Thromb Haemost. 2005;  93 631-640
  • 79 Myohanen H, Vaheri A. Regulation and interactions in the activation of cell-associated plasminogen.  Cell Mol Life Sci. 2004;  61 2840-2858
  • 80 Huovila A P, Turner A J, Pelto-Huikko M. et al . Shedding light on ADAM metalloproteinases.  Trends Biochem Sci. 2005;  30 413-422
  • 81 Ludwig A, Hundhausen C, Lambert M H. et al . Metalloproteinase inhibitors for the disintegrin-like metalloproteinases ADAM10 and ADAM17 that differentially block constitutive and phorbol ester-inducible shedding of cell surface molecules.  Comb Chem High Throughput Screen. 2005;  8 161-171
  • 82 Blobel C P. ADAMs: key components in EGFR signalling and development.  Nat Rev Mol Cell Biol. 2005;  6 32-43
  • 83 Vlodavsky I, Goldshmidt O, Zcharia E. et al . Mammalian heparanase: involvement in cancer metastasis, angiogenesis and normal development.  Semin Cancer Biol. 2002;  12 121-129
  • 84 Sanderson R D, Yang Y, Suva L J. et al . Heparan sulfate proteoglycans and heparanase - partners in osteolytic tumor growth and metastasis.  Matrix Biol. 2004;  23 341-352
  • 85 Simizu S, Ishida K, Osada H. Heparanase as a molecular target of cancer chemotherapy.  Cancer Sci. 2004;  95 553-558
  • 86 Kim J B. Three-dimensional tissue culture models in cancer biology.  Semin Cancer Biol. 2005;  15 365-377
  • 87 Presta M, Dell’Era P, Mitola S. et al . Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis.  Cytokine Growth Factor Rev. 2005;  16 159-178
  • 88 Dibrov A, Kashour T, Amara F M. The role of transforming growth factor beta signaling in messenger RNA stability.  Growth Factors. 2006;  24 1-11
  • 89 Tanaka T, Bai Z, Srinoulprasert Y. et al . Chemokines in tumor progression and metastasis.  Cancer Sci. 2005;  96 317-322
  • 90 Zlotnik A. Chemokines in neoplastic progression.  Semin Cancer Biol. 2004;  14 181-185
  • 91 Balkwill F. The significance of cancer cell expression of the chemokine receptor CXCR4.  Semin Cancer Biol. 2004;  14 171-179
  • 92 Kucia M, Reca R, Miekus K. et al . Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis.  Stem Cells. 2005;  23 879-894
  • 93 Ding Y, Shimada Y, Maeda M. et al . Association of CC chemokine receptor 7 with lymph node metastasis of esophageal squamous cell carcinoma.  Clin Cancer Res. 2003;  9 3406-3412
  • 94 Standal T, Borset M, Sundan A. Role of osteopontin in adhesion, migration, cell survival and bone remodeling.  Exp Oncol. 2004;  26 179-184
  • 95 Rangaswami H, Bulbule A, Kundu G C. Osteopontin: role in cell signaling and cancer progression.  Trends Cell Biol. 2006;  16 79-87 Epub ahead of print
  • 96 Steeg P S. Perspectives on classic article: metastasis suppressor genes.  J Natl Cancer Inst. 2004;  96 E4-6
  • 97 Folkman J. Endogenous angiogenesis inhibitors.  APMIS. 2004;  112 496-4507
  • 98 De Cicco M. The prothrombotic state in cancer: pathogenic mechanisms.  Crit Rev Oncol Hematol. 2004;  50 187-196
  • 99 Khorana A A, Fine R L. Pancreatic cancer and thromboembolic disease.  Lancet Oncol. 2004;  5 655-663
  • 100 Harper J, Moses M A. Molecular regulation of tumor angiogenesis: mechanisms and therapeutic implications.  EXS. 2006;  96 223-268
  • 101 Maxwell P H. The HIF pathway in cancer.  Semin Cell Dev Biol. 2005;  16 523-530
  • 102 Liao F, Li Y, O’Connor W. et al . Monoclonal antibody to vascular endothelial-cadherin is a potent inhibitor of angiogenesis, tumor growth, and metastasis.  Cancer Res. 2000;  60 6805-6810
  • 103 Hashizume H, Baluk P, Morikawa S. et al . Openings between defective endothelial cells explain tumor vessel leakiness.  Am J Pathol. 2000;  156 1363-1380
  • 104 Giordano F J, Johnson R S. Angiogenesis: the role of the microenvironment in flipping the switch.  Curr Opin Genet Dev. 2001;  11 35-40
  • 105 Carmeliet P, Jain R K. Angiogenesis in cancer and other diseases.  Nature. 2000;  407 249-257
  • 106 Park C, Lugus J J, Choi K. Stepwise commitment from embryonic stem to hematopoietic and endothelial cells.  Curr Top Dev Biol. 2005;  66 1-36
  • 107 Ho H K, Jang J J, Kaji S. et al . Developmental endothelial locus-1 (Del-1), a novel angiogenic protein: its role in ischemia.  Circulation. 2004;  109 1314-1319
  • 108 Robinson S C, Coussens L M. Soluble mediators of inflammation during tumor development.  Adv Cancer Res. 2005;  93 159-187
  • 109 Prandoni P, Falanga A, Piccioli A. Cancer and venous thromboembolism.  Lancet Oncol. 2005;  6 401-410
  • 110 Pei D. Matrix metalloproteinases target protease-activated receptors on the tumor cell surface.  Cancer Cell. 2005;  7 207-208
  • 111 Murugappan S, Shankar H, Kunapuli S P. Platelet receptors for adenine nucleotides and thromboxane A2.  Semin Thromb Hemost. 2004;  30 411-418
  • 112 Boucheix C, Rubinstein E. Tetraspanins.  Cell Mol Life Sci. 2001;  58 1189-2205
  • 113 Yunta M, Lazo P A. Tetraspanin proteins as organisers of membrane microdomains and signalling complexes.  Cell Signal. 2003;  15 559-564
  • 114 Levy S, Shoham T. The tetraspanin web modulates immune-signalling complexes.  Nat Rev Immunol. 2005;  5 136-148
  • 115 Hemler M E. Tetraspanin functions and associated microdomains.  Nat Rev Mol Cell Biol. 2005;  6 801-811
  • 116 Kazarov A R, Yang X, Stipp C S. et al . An extracellular site on tetraspanin CD151 determines alpha 3 and alpha 6 integrin-dependent cellular morphology.  J Cell Biol. 2002;  158 1299-1309
  • 117 Zhu G Z, Miller B J, Boucheix C. et al . Residues SFQ (173 - 175) in the large extracellular loop of CD9 are required for gamete fusion.  Development. 2002;  129 1995-2002
  • 118 Stipp C S, Kolesnikova T V, Hemler M E. Functional domains in tetraspanin proteins.  Trends Biochem Sci. 2003;  28 106-112
  • 119 Berditchevski F. Complexes of tetraspanins with integrins: more than meets the eye.  J Cell Sci. 2001;  114 4143-4151
  • 120 Levy S, Todd S C, Maecker H T. CD81 (TAPA-1): a molecule involved in signal transduction and cell adhesion in the immune system.  Annu Rev Immunol. 1998;  16 89-109
  • 121 Chattopadhyay N, Wang Z, Ashman L K. et al . alpha3beta1 integrin-CD151, a component of the cadherin-catenin complex, regulates PTPmu expression and cell-cell adhesion.  J Cell Biol. 2003;  163 1351-1362
  • 122 Lämmerding J, Kazarov A R, Huang H. et al . Tetraspanin CD151 regulates alpha6beta1 integrin adhesion strengthening.  Proc Natl Acad Sci USA. 2003;  100 7616-7621
  • 123 Herlevsen M, Schmidt D S, Miyazaki K. et al . The association of the tetraspanin D6.1A with the alpha6beta4 integrin supports cell motility and liver metastasis formation.  J Cell Sci. 2003;  116 4373-4390
  • 124 Yang X, Claas C, Kraeft S K. et al . Palmitoylation of tetraspanin proteins: modulation of CD151 lateral interactions, subcellular distribution, and integrin-dependent cell morphology.  Mol Biol Cell. 2002;  13 767-781
  • 125 Berditchevski F, Odintsova E, Sawada S. et al . Expression of the palmitoylation-deficient CD151 weakens the association of alpha 3 beta 1 integrin with the tetraspanin-enriched microdomains and affects integrin-dependent signaling.  J Biol Chem. 2002;  277 36 991-37 000
  • 126 Clark K L, Oelke A, Johnson M E. et al . CD81 associates with 14 - 3-3 in a redox-regulated palmitoylation-dependent manner.  J Biol Chem. 2004;  279 19 401-19 406
  • 127 Claas C, Wahl J, Orlicky D J. et al . The tetraspanin D6.1A and its molecular partners on rat carcinoma cells.  Biochem J. 2005;  389 99-110
  • 128 Cherukuri A, Carter R H, Brooks S. et al . B cell signaling is regulated by induced palmitoylation of CD81.  J Biol Chem. 2004;  279 31 973-31 982
  • 129 Claas C, Stipp C S, Hemler M E. Evaluation of prototype transmembrane 4 superfamily protein complexes and their relation to lipid rafts.  J Biol Chem. 2001;  276 7974-7984
  • 130 Hakomori S I. Inaugural Article: The glycosynapse.  Proc Natl Acad Sci USA. 2002;  99 225-232
  • 131 Kawakami Y, Kawakami K, Steelant W F. et al . Tetraspanin CD9 is a “proteolipid,” and its interaction with alpha 3 integrin in microdomain is promoted by GM3 ganglioside, leading to inhibition of laminin-5-dependent cell motility.  J Biol Chem. 2002;  277 34 349-34 358
  • 132 Simons K, Toomre D. Lipid rafts and signal transduction.  Nat Rev Mol Cell Biol. 2000;  1 31-39
  • 133 Kovalenko O V, Yang X, Kolesnikova T V. et al . Evidence for specific tetraspanin homodimers: inhibition of palmitoylation makes cysteine residues available for cross-linking.  Biochem J. 2004;  377 407-417
  • 134 De Curtis I. Cell migration: GAPs between membrane traffic and the cytoskeleton.  EMBO Rep. 2001;  2 277-281
  • 135 Hanks S K, Ryzhova L, Shin N Y. et al . Focal adhesion kinase signaling activities and their implications in the control of cell survival and motility.  Front Biosci. 2003;  8 982-996
  • 136 Schlaepfer D D, Mitra S K. Multiple connections link FAK to cell motility and invasion.  Curr Opin Genet Dev. 2004;  14 92-101
  • 137 Zhang X A, Bontrager A L, Hemler M E. Transmembrane-4 superfamily proteins associate with activated protein kinase C (PKC) and link PKC to specific beta(1) integrins.  J Biol Chem. 2001;  276 25 005-25 013
  • 138 Shigeta M, Sanzen N, Ozawa M. et al . CD151 regulates epithelial cell-cell adhesion through PKC- and Cdc42-dependent actin cytoskeletal reorganization.  J Cell Biol. 2003;  163 165-176
  • 139 Friedl P, Bröcker E B. T cell migration in three-dimensional extracellular matrix: guidance by polarity and sensations.  Dev Immunol. 2000;  7 249-266
  • 140 Powelka A M, Sun J, Li J. et al . Stimulation-dependent recycling of integrin beta1 regulated by ARF6 and Rab11.  Traffic. 2004;  5 20-36
  • 141 Del P ozo MA. Integrin signaling and lipid rafts.  Cell Cycle. 2004;  3 725-728
  • 142 Lau L M, Wee J L, Wright M D. et al . The tetraspanin superfamily member CD151 regulates outside-in integrin alphaIIbbeta3 signaling and platelet function.  Blood. 2004;  104 2368-2375
  • 143 Serru V, Le N aour F, Billard M. et al . Selective tetraspan-integrin complexes (CD81/alpha4beta1, CD151/alpha3beta1, CD151/alpha6beta1) under conditions disrupting tetraspan interactions.  Biochem J. 1999;  340 103-111
  • 144 Feigelson S W, Grabovsky V, Shamri R. et al . The CD81 tetraspanin facilitates instantaneous leukocyte VLA-4 adhesion strengthening to vascular cell adhesion molecule 1 (VCAM-1) under shear flow.  J Biol Chem. 2003;  278 51 203-51 212
  • 145 Hung A Y, Sheng M. PDZ domains: structural modules for protein complex assembly.  J Biol Chem. 2002;  277 5699-5702
  • 146 Murayama Y, Miyagawa J, Oritani K. et al . CD9-mediated activation of the p46 Shc isoform leads to apoptosis in cancer cells.  J Cell Sci. 2004;  117 3379-3388
  • 147 Tachibana I, Hemler M E. Role of transmembrane 4 superfamily (TM4SF) proteins CD9 and CD81 in muscle cell fusion and myotube maintenance.  J Cell Biol. 1999;  146 893-904
  • 148 Ono M, Handa K, Withers D A. et al . Motility inhibition and apoptosis are induced by metastasis-suppressing gene product CD82 and its analogue CD9, with concurrent glycosylation.  Cancer Res. 1999;  59 2335-2339
  • 149 Delaguillaumie A, Lagaudriere-Gesbert C, Popoff M R. et al . Rho GTPases link cytoskeletal rearrangements and activation processes induced via the tetraspanin CD82 in T lymphocytes.  J Cell Sci. 2002;  115 433-443
  • 150 Carloni V, Mazzocca A, Ravichandran K S. Tetraspanin CD81 is linked to ERK/MAPKinase signaling by Shc in liver tumor cells.  Oncogene. 2004;  23 1566-1374
  • 151 Shi W, Fan H, Shum L. et al . The tetraspanin CD9 associates with transmembrane TGF-alpha and regulates TGF-alpha-induced EGF receptor activation and cell proliferation.  J Cell Biol. 2000;  148 591-602
  • 152 Yan Y, Shirakabe K, Werb Z. The metalloprotease Kuzbanian (ADAM10) mediates the transactivation of EGF receptor by G protein-coupled receptors.  J Cell Biol. 2002;  158 221-226
  • 153 Bienstock R J, Barrett J C. KAI1, a prostate metastasis suppressor: prediction of solvated structure and interactions with binding partners: integrins, cadherins, and cell-surface receptor proteins.  Mol Carcinog. 2001;  32 139-153
  • 154 Anzai N, Lee Y, Youn B S. et al . C-kit associated with the transmembrane 4 superfamily proteins constitutes a functionally distinct subunit in human hematopoietic progenitors.  Blood. 2002;  99 4413-4421
  • 155 Stein K K, Primakoff P, Myles D. Sperm-egg fusion: events at the plasma membrane.  J Cell Sci. 2004;  117 6269-6274
  • 156 Schwander M, Leu M, Stumm M. et al . Beta1 integrins regulate myoblast fusion and sarcomere assembly.  Dev Cell. 2003;  4 673-685
  • 157 Hemler M E. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain.  Annu Rev Cell Dev Biol. 2003;  19 397-422
  • 158 Garcia E, Pion M, Pelchen-Matthews A. et al . HIV-1 trafficking to the dendritic cell-T-cell infectious synapse uses a pathway of tetraspanin sorting to the immunological synapse.  Traffic. 2005;  6 488-501
  • 159 Kobayashi T, Vischer U M, Rosnoblet C. et al . The tetraspanin CD63/lamp3 cycles between endocytic and secretory compartments in human endothelial cells.  Mol Biol Cell. 2000;  11 1829-1843
  • 160 Wubbolts R, Leckie R S, Veenhuizen P T. et al . Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body formation.  J Biol Chem. 2003;  278 10 963-10 972
  • 161 Heijnen H F, Van Lier M, Waaijenborg S. et al . Concentration of rafts in platelet filopodia correlates with recruitment of c-Src and CD63 to these domains.  J Thromb Haemost. 2003;  1 1161-1173
  • 162 Masciopinto F, Giovani C, Campagnoli S. et al . Association of hepatitis C virus envelope proteins with exosomes.  Eur J Immunol. 2004;  34 2834-2842
  • 163 Denzer K, Kleijmeer M J, Heijnen H F. et al . Exosome: from internal vesicle of the multivesicular body to intercellular signaling device.  J Cell Sci. 2000;  113 3365-3374
  • 164 Butler J S. The yin and yang of the exosome.  Trends Cell Biol. 2002;  12 90-96
  • 165 Fevrier B, Raposo G. Exosome secretion: the art of reutilizing nonrecycled proteins?.  Curr Opin Cell Biol. 2004;  16 415-421
  • 166 de Gassart A, Geminard C, Hoekstra D. et al . Exosomes: endosomal-derived vesicles shipping extracellular messages.  Traffic. 2004;  5 896-903
  • 167 Zhang X A, Kazarov A R, Yang X. et al . Function of the tetraspanin CD151-alpha6beta1 integrin complex during cellular morphogenesis.  Mol Biol Cell. 2002;  13 1-11
  • 168 He B, Liu L, Cook G A. et al . Tetraspanin CD82 attenuates cellular morphogenesis through down-regulating integrin alpha6-mediated cell adhesion.  J Biol Chem. 2005;  280 3346-3354
  • 169 Klein-Soyer C, Azorsa D O, Cazenave J P. et al . CD9 participates in endothelial cell migration during in vitro wound repair.  Arterioscler Thromb Vasc Biol. 2000;  20 360-369
  • 170 Longo N, Yanez-Mo M, Mittelbrunn M. et al . Regulatory role of tetraspanin CD9 in tumor-endothelial cell interaction during transendothelial invasion of melanoma cells.  Blood. 2001;  98 3717-3726
  • 171 Wright M D, Geary S M, Fitter S. et al . Characterization of mice lacking the tetraspanin superfamily member CD151.  Mol Cell Biol. 2004;  24 5978-5988
  • 172 Kagawa H, Nomura S, Miyake T. et al . Expression of prothrombinase activity and CD9 antigen on the surface of small vesicles from stimulated human endothelial cells.  Thromb Res. 1995;  80 451-460
  • 173 Odintsova E, Sugiura T, Berditchevski F. Attenuation of EGF receptor signaling by a metastasis suppressor, the tetraspanin CD82/KAI-1.  Curr Biol. 2000;  10 1009-1012
  • 174 Claas C, Seiter S, Claas A. et al . Association between the rat homologue of CO-029, a metastasis-associated tetraspanin molecule and consumption coagulopathy.  J Cell Biol. 1998;  141 267-280
  • 175 Testa J E, Brooks P C, Lin J M. et al . Eukaryotic expression cloning with an antimetastatic monoclonal antibody identifies a tetraspanin (PETA-3/CD151) as an effector of human tumor cell migration and metastasis.  Cancer Res. 1999;  59 3812-3820
  • 176 Wright M D, Moseley G W, van Spriel A B. Tetraspanin microdomains in immune cell signalling and malignant disease.  Tissue Antigens. 2004;  64 533-542
  • 177 Boucheix C, Duc G H, Jasmin C. et al . Tetraspanins and malignancy.  Expert Rev Mol Med. 2001;  Jan 31 1-17
  • 178 Barrio M M, Bravo A I, Portela P. et al . A new epitope on human melanoma-associated antigen CD63/ME491 expressed by both primary and metastatic melanoma.  Hybridoma. 1998;  17 355-364
  • 179 Kawashima M, Doh-ura K, Mekada E. et al . CD9 expression in solid non-neuroepithelial tumors and infiltrative astrocytic tumors.  J Histochem Cytochem. 2002;  50 1195-1203
  • 180 Hori H, Yano S, Koufuji K. et al . CD9 expression in gastric cancer and its significance.  J Surg Res. 2004;  117 208-215
  • 181 Szala S, Kasai Y, Steplewski Z. et al . Molecular cloning of cDNA for the human tumor-associated antigen CO-029 and identification of related transmembrane antigens.  Proc Natl Acad Sci USA. 1990;  87 6833-6837
  • 182 Hashida H, Takabayashi A, Tokuhara T. et al . Clinical significance of transmembrane 4 superfamily in colon cancer.  Br J Cancer. 2003;  89 158-167
  • 183 Kanetaka K, Sakamoto M, Yamamoto Y. et al . Overexpression of tetraspanin CO-029 in hepatocellular carcinoma.  J Hepatol. 2001;  35 637-642
  • 184 Sho M, Adachi M, Taki T. et al . Transmembrane 4 superfamily as a prognostic factor in pancreatic cancer.  Int J Cancer. 1998;  79 509-516
  • 185 Mori M, Mimori K, Shiraishi T. et al . Motility related protein 1 (MRP1/CD9) expression in colon cancer.  Clin Cancer Res. 1998;  4 1507-1510
  • 186 Rinker-Schaeffer C W, Hawkins A L, Ru N. et al . Differential suppression of mammary and prostate cancer metastasis by human chromosomes 17 and 11.  Cancer Res. 1994;  54 6249-6256
  • 187 Liu W M, Zhang X A. KAI1/CD82, a tumor metastasis suppressor.  Cancer Lett. 2005;  Oct 28 Epub ahead of print
  • 188 Lombardi D P, Geradts J, Foley J F. et al . Loss of KAI1 expression in the progression of colorectal cancer.  Cancer Res. 1999;  59 5724-5731
  • 189 Takaoka A, Hinoda Y, Satoh S. et al . Suppression of invasive properties of colon cancer cells by a metastasis suppressor KAI1 gene.  Oncogene. 1998;  16 1443-1453
  • 190 Friess H, Guo X Z, Tempia-Caliera A A. et al . Differential expression of metastasis-associated genes in papilla of Vater and pancreatic cancer correlates with disease stage.  J Clin Oncol. 2001;  19 2422-2432
  • 191 Jackson P, Marreiros A, Russell P J. KAI1 tetraspanin and metastasis suppressor.  Int J Biochem Cell Biol. 2005;  37 530-534
  • 192 Gu J, Tamura M, Pankov R. et al . Shc and FAK differentially regulate cell motility and directionality modulated by PTEN.  J Cell Biol. 1999;  146 389-403
  • 193 Klemke R L, Leng J, Molander R. et al . CAS/Crk coupling serves as a “molecular switch” for induction of cell migration.  J Cell Biol. 1998;  140 961-972
  • 194 Kolesnikova T V, Stipp C S, Rao R M. et al . EWI-2 modulates lymphocyte integrin alpha4beta1 functions.  Blood. 2004;  103 3013-3039
  • 195 Zhang X A, He B, Zhou B. et al . Requirement of the p130CAS-Crk coupling for metastasis suppressor KAI1/CD82-mediated inhibition of cell migration.  J Biol Chem. 2003;  278 27 319-27 328
  • 196 Charrin S, Manie S, Thiele C. et al . A physical and functional link between cholesterol and tetraspanins.  Eur J Immunol. 2003;  33 2479-2489
  • 197 Odintsova E, Voortman J, Gilbert E. et al . Tetraspanin CD82 regulates compartmentalisation and ligand-induced dimerization of EGFR.  J Cell Sci. 2003;  116 4557-4566
  • 198 Sridhar S C, Miranti C K. Tetraspanin KAI1/CD82 suppresses invasion by inhibiting integrin-dependent crosstalk with c-Met receptor and Src kinases.  Oncogene. 2006;  25 2367-2378 Epub ahead of print
  • 199 Lee J H, Park S R, Chay K O. et al . KAI1 COOH-terminal interacting tetraspanin (KITENIN), a member of the tetraspanin family, interacts with KAI1, a tumor metastasis suppressor, and enhances metastasis of cancer.  Cancer Res. 2004;  64 4235-4243
  • 200 Bass R, Werner F, Odintsova E. et al . Regulation of urokinase receptor proteolytic function by the tetraspanin CD82.  J Biol Chem. 2005;  280 14 811-14 818
  • 201 Geary S M, Cambareri A C, Sincock P M. et al . Differential tissue expression of epitopes of the tetraspanin CD151 recognised by monoclonal antibodies.  Tissue Antigens. 2001;  58 141-153
  • 202 Tokuhara T, Hasegawa H, Hattori N. et al . Clinical significance of CD151 gene expression in non-small cell lung cancer.  Clin Cancer Res. 2001;  7 4109-4114
  • 203 Gesierich S, Paret C, Hildebrand D. et al . Colocalization of the tetraspanins, CO-029 and CD151, with integrins in human pancreatic adenocarcinoma: impact on cell motility.  Clin Cancer Res. 2005;  11 2840-2852
  • 204 Ang J, Lijovic M, Ashman L K. et al . CD151 protein expression predicts the clinical outcome of low-grade primary prostate cancer better than histologic grading: a new prognostic indicator?.  Cancer Epidemiol Biomarkers Prev. 2004;  13 1717-1721
  • 205 Kohno M, Hasegawa H, Miyake M. et al . CD151 enhances cell motility and metastasis of cancer cells in the presence of focal adhesion kinase.  Int J Cancer. 2002;  97 336-343
  • 206 Lan R, Liu Z, Song Y. et al . Effects of rAAV-CD151 and rAAV-antiCD151 on the migration of human tongue squamous carcinoma cell line Tca8113.  J Huazhong Univ Sci Technolog Med Sci. 2004;  24 556-559
  • 207 Shiomi T, Inoki I, Kataoka F. et al . Pericellular activation of proMMP-7 (promatrilysin-1) through interaction with CD151.  Lab Invest. 2005;  85 1489-1506
  • 208 Sugiura T, Berditchevski F. Function of alpha3beta1-tetraspanin protein complexes in tumor cell invasion. Evidence for the role of the complexes in production of matrix metalloproteinase 2 (MMP-2).  J Cell Biol. 1999;  146 1375-1389
  • 209 Sela B A, Steplewski Z, Koprowski H. Colon carcinoma-associated glycoproteins recognized by monoclonal antibodies CO-029 and GA22 - 2.  Hybridoma. 1989;  8 481-491
  • 210 Huerta S, Harris D M, Jazirehi A. et al . Gene expression profile of metastatic colon cancer cells resistant to cisplatin-induced apoptosis.  Int J Oncol. 2003;  22 663-670
  • 211 Bick R L. Platelet function defects: a clinical review.  Semin Thromb Hemost. 1992;  18 353-372
  • 212 Kanetaka K, Sakamoto M, Yamamoto Y. et al . Possible involvement of tetraspanin CO-029 in hematogenous intrahepatic metastasis of liver cancer cells.  Gastroenterol Hepatol. 2003;  18 1309-1314

Dr. Margot Zöller

Department of Tumor Progression and Tumor Defense, German Cancer Research Center

Im Neuenheimer Feld 280

69120 Heidelberg

Germany

Phone: ++49/62 21/42 24 54

Fax: ++49/62 21/43 47 60

Email: m.zoeller@dkfz.de

    >