Subscribe to RSS
DOI: 10.1055/s-2006-925185
Restoration of Transforming Growth Factor-β Type II Receptor Reduces Tumorigenicity in the Human Adrenocortical Carcinoma SW-13 Cell Line
Publication History
Received 21 July 2005
Accepted after revision 23 November 2005
Publication Date:
27 April 2006 (online)
Abstract
Transforming growth factor-β (TGF-β) is a potent growth suppressor. Acquisition of TGF-β resistance has been reported in many tumors, and has been associated with reduced TGF-β receptor expression. In this study, we examined TGF-β 1, TGF-β type I receptor (TβRI) and TGF-β type II receptor (TβRII) expression in SW-13 adrenocortical carcinoma cells by Northern and Western blot analysis. SW-13 cells did not express TβRII mRNA or protein. We have investigated the role of TβRII in modulating tumorigenic potential using stably transfected SW-13 cells with TβRII expression plasmid. TβRII-positive SW-13 cell growth was inhibited by exogenous human TGF-β1 (hTGF-β1) in a dose-dependent manner. In contrast, SW-13 cells and control clones transfected with empty vector remained hTGF-β1-insensitive. Xenograft examination in athymic nude mice demonstrated that TβRII-positive SW-13 cells reduced tumor-forming activity. Reconstructing the TβRII can lead to reversion of the malignant phenotype of TβRII-negative human adrenocortical carcinoma, which contains SW-13 cells. Reduced TβRII expression may play a critical role in determining the malignant phenotype of human adrenocortical carcinoma.
Key words
Transforming growth factor-β (TGF-β) - TGF-β insensitivity - TGF-β type II receptor - adrenocortical carcinoma - cell proliferation
References
- 1 Roberts A B, Sporn M B. Transforming growth factor β. Adv Cancer Res. 1988; 51 107-145
- 2 Moses H L, Yang E Y, Pietenpol J A. TGF-β stimulation and inhibition of cell proliferation: new mechanistic insights. Cell. 1990; 63 245-247
- 3 Derynck R, Akhurst R J, Balmain A. TGF-β signaling in tumor suppression and cancer progression. Nature Genet. 2001; 29 117-129
- 4 Massagué J, Blain S W, Lo R S. TGFβ signaling in growth control, cancer, and heritable disorders. Cell. 2000; 103 295-309
- 5 Wrana J L, Attisano L, Carcamo J, Zentella A, Doody J, Laiho M, Wang X F, Massagué J. TGF-β signals through heteromeric protein kinase receptor complex. Cell. 1992; 71 1003-1014
- 6 Derynck R, Zhang Y, Feng X H. Smads: transcriptional activators of TGF-β responses. Cell. 1998; 95 737-740
- 7 Massegué J. How cells read TGF-β signals. Nature Rev Mol Cell Biol. 2000; 1 169-178
- 8 Shi Y, Massegué J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell. 2003; 113 685-700
- 9 Howe P H, Draetta G, Leof E B. Transforming growth factor β1 inhibition of p34cdc2 phosphorylation and histone H1 kinase activity is associated with G1/S-phase growth arrest. Mol Cell Biol. 1991; 11 1185-1194
- 10 Laiho M, De Caprio J A, Ludlow J W, Livingston D M, Massagué J. Growth inhibition by TGF-β linked to suppression of retinoblastoma protein phosphorylation. Cell. 1990; 62 175-185
- 11 Vassilopoulou-Sellin R, Schultz P N. Adrenocortical carcinoma. Cancer. 2001; 92 1113-1121
- 12 Reincke M, Karl M, Travis W H, Mastorakos G, Allolio B, Linehan H M, Chrousos G P. p53 mutations in human adrenocortical neoplasm: immunohistochemical and molecular studies. J Clin Endocrinol Metab. 1994; 78 790-794
- 13 Weber M M, Fottner C, Wolf E. The role of the insulin-like growth factor system in adrenocortical tumorigenesis. Eur J Clin Invest. 2000; 30 (Suppl. 3) 69-75
- 14 Feige J J, Cochet C, Savona C, Shi D L, Keramidas M, Defaye G, Chambaz E M. Transforming growth factor β1: an autocrine regulator of adrenocortical steroidogenesis. Endocr Res. 1991; 17 267-279
- 15 Stankovic A K, Dion L D, Parker C R Jr. Effects of transforming growth factor-β on human fetal adrenal steroid production. Mol Cell Endocrinol. 1994; 99 145-151
- 16 Riopel L, Branchaud C L, Goodyer C G, Adkar V, Lefebvre Y. Growth-inhibitory effect of TGF-β on human fetal adrenal cells in primary monolayer culture. J Cell Physiol. 1989; 140 233-238
- 17 Parker C R Jr, Stankovic A K, Harlin C, Carden L. Adrenocorticotropin interferes with transforming growth factor-β-induced growth inhibition of neocortical cells from the human fetal adrenal gland. J Clin Endocrinol Metab. 1992; 75 1519-1521
- 18 Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbauth J, Fan R S, Zborowska E, Kinzler K W, Vogelstein B, Brattain M, Willson K V. Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science. 1995; 268 1336-1338
- 19 Park K, Kim S J, Bang Y J, Park J G, Kim N K, Roberts A B, Sporn M B. Genetic changes in the transforming growth factor β (TGF-β) type II receptor gene in human gastric cancer cells: correlation with sensitivity to growth inhibition by TGF-β. Proc Natl Acad Sci U S A. 1994; 91 8772-8776
- 20 Yang H K, Kang S H, Kim Y S, Won K, Bang Y J, Kim S J. Truncation of the TGF-β type II receptor gene results in insensitivity to TGF-β in human gastric cancer cells. Oncogene. 1999; 18 2213-2219
- 21 Vincent F, Hagiwara K, Ke Y, Stoner G D, Demetrick D J, Bennett W P. Mutation analysis of the transforming growth factor β type II receptor in sporadic human cancers of the pancreas, liver, and breast. Biochem Biophys Res Commun. 1996; 223 561-564
- 22 Furuta K, Misao S, Takahashi K, Tagaya T, Fukuzawa Y, Ishikawa T, Yoshioka K, Kakumu S. Gene mutation of transforming growth factor β1 type II receptor in hepatocellular carcinoma. Int J Cancer. 1999; 81 851-853
- 23 Tomita S, Deguchi S, Miyaguni T, Muto Y, Tamamoto T, Toda T. Analyses of microsatellite instability and the transforming growth factor-β receptor type II gene mutation in sporadic human breast cancer and their correlation with clinicopathological features. Breast Cancer Res Treat. 1999; 53 33-39
- 24 Matoba H, Sugano S, Yamaguchi N, Miyachi Y. Expression of transforming growth factor-β1 and transforming growth factor-β type-II receptor mRNA in papillary thyroid carcinoma. Horm Metab Res. 1998; 30 624-628
- 25 Takada T, Iida K, Awaji T, Itoh K, Takahashi R, Shibui A, Yoshida K, Sugano S, Tujimoto G. Selective production of transgenic mice using green fluorescent protein as a marker. Nat Biotechnol. 1997; 15 458-461
- 26 Matzuk M M, Finegold M J, Mather J P, Krummen L, Lu H, Bradley A. Development of cancer cachexia-like syndrome and adrenal tumors in inhibin-deficient mice. Proc Natl Acad Sci U S A.. 1994; 91 8817-8821
- 27 Beuschlein F, Looyenga B D, Bleasdale S E, Mutch C, Bavers D L, Parlow A F, Nilson J H, Hammer G D. Activin induces x-zone apoptosis that inhibits luteinizing hormone-dependent adrenocortical tumor formation in inhibin-deficient mice. Mol Cell Biol. 2003; 23 3951-3964
- 28 Arnaldi G, Freddi S, Mancini T, Kola B, Mantero F. Transforming growth factor β1: implications in adrenocortical tumorigenesis. Endocr Res. 2000; 26 905-910
- 29 Boccuzzi A, Terzolo M, Cappia S, De Giuli P, De Risi C, Leonardo E, Bovio S, Borriero M, Paccotti P, Angeli A. Different immunohistochemical patterns of TGF-β1 expression in benign and malignant adrenocortical tumours. Clin Endocrinol (Oxf). 1999; 50 801-808
- 30 Le Roy C, Maisnier-Patin K, Leduque P, Li J Y, Saez J M, Langlois D. Overexpression of a dominant-negative type II TGFβ receptor tagged with green fluorescent protein inhibits the effects of TGFβ on cell growth and gene expression of mouse adrenal tumor cell line Y-1 and enhances cell tumorigenicity. Mol Cell Endocrinol. 1999; 158 87-98
- 31 Sun L, Wu G, Willson J K, Zborowska E, Yang J, Rajkarunanayake I, Wang J, Gentry L E, Wang X F, Brattain M G. Expression of transforming growth factor β type II receptor leads to reduced malignancy in human breast cancer MCF-7 Cells. J Biol Chem. 1994; 269 26 449-26 455
- 32 Chang J, Park K, Bang Y J, Kim W S, Kim D, Kim S J. Expression of transforming growth factor β type II receptor reduces tumorigenicity in human gastric cancer cells. Cancer Res. 1997; 57 2856-2859
- 33 Turco A, Coppa A, Aloe S, Baccheschi G, Morrone S, Zupi G, Colletta G. Overexpression of transforming growth factor β -type II receptor reduces tumorigenicity and metastastic potential of K-ras-transformed thyroid cells. Int J Cancer. 1999; 80 85-91
- 34 Weiss L M, Medeiros L J, Vickery A L Jr. Pathologic features of prognostic significance in adrenocortical carcinoma. Am J Surg Pathol. 1989; 13 202-206
- 35 Sasano H, Suzuki T, Moriya T. Discrening malignancy in resected adrenocortical neoplasms. Endocr Pathol. 2001; 12 397-406
- 36 Wachenfeld C, Beuschlein F, Zwermann O, Mota P, Fassnacht M, Alloloi B, Reincke M. Discerning malignancy in adrenocortical tumors: are molecular makers useful?. Eur J Endocrinol. 2001; 145 335-341
- 37 Miyajima A, Asano T, Seta K, Asano T, Kakoi N, Hayakawa M. Loss of expression of transforming growth factor-β receptor as a prognostic factor in patients with renal cell carcinoma. Urology. 2003; 61 1072-1077
- 38 Kim I Y, Ahn H J, Lang S, Oefelein M G, Oyasu R, Kozlowski J M, Lee C. Loss of expression of transforming growth factor-β receptor is associated with poor prognosis in prostate cancer patients. Clin Cancer Res. 1998; 4 1625-1630
- 39 Muñoz-Antonia T, Li X, Reiss M, Jackson R, Antonia S. A mutation in the transforming growth factor β type II receptor gene promoter associated with loss of gene expression. Cancer Res. 1996; 56 4831-4835
- 40 Hahm K B, Cho K, Lee C, Im Y H, Chang J, Choi S G, Sorensen P H, Thiele C J, Kim S J. Repression of the gene encoding the TGF-β type II receptor is a major target of the EWS-FLI1 oncoprotein. Nat Genet. 1999; 23 222-227
- 41 Yamamoto N. Reduced expression of transforming growth factor β type II receptor mRNA in the human adrenocortical carcinoma cell line SW-13. J Med Soc Toho Univ. 2002; 49 336-346
- 42 Vassilopoulou-Sellin R, Guinee V F, Klein M J, Taylor S H, Hess K R, Schultz P N, Samaan N A. Impact of adjuvant mitotane on the clinical course of patients with adrenocortical cancer. Cancer. 1993; 71 3119-3123
- 43 Bukowski R M, Wolfe M, Levine H S, Crawford D E, Stephens R L, Gaynor E, Harker W G. Phase II trial of mitotane and cisplatin in patients with adrenal carcinoma: a Southwest Oncology Group study. J Clin Oncol. 1993; 11 161-165
Natsuko Yamamoto, M. D., Ph. D.
Division of Diabetes, Metabolism and Endocrinology · Department of Medicine · Toho University School of Medicine
6-11-1 Omorinishi · Ota-ku · Tokyo · 143-8541 Japan ·
Phone: +81 (3) 3762-4151/6565
Fax: +81 (3) 3765-6488
Email: n-yamamoto@med.toho-u.ac.jp