Plant Biol (Stuttg) 2006; 8(6): 821-830
DOI: 10.1055/s-2006-924460
Review Article

Georg Thieme Verlag Stuttgart KG · New York

Molecular Phylogeny and Character Evolution of Carnivorous Plant Families in Caryophyllales - Revisited

G. Heubl1 , G. Bringmann2 , H. Meimberg3
  • 1Department Biologie I, Institut für Systematische Botanik, Ludwig-Maximilians-Universität, Menzinger Straße 67, 80638 München, Germany
  • 2Institut für Organische Chemie, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg, Germany
  • 3Department of Plant Sciences, University of California Davis, One Shields Ave., Davis, CA 95616, USA
Further Information

Publication History

Received: December 12, 2005

Accepted: June 30, 2006

Publication Date:
25 October 2006 (online)

Abstract

Recent phylogenetic analyses based on single gene and combined data sets have substantially increased our knowledge of the phylogeny of Caryophyllales s.l., indicating that additional carnivorous families are related to this alliance. In earlier contributions towards a reassessment of inter- and infrafamilial relationships slowly evolving genes had been preferred for phylogenetic inference. The resulting tree topologies based on rbcL and 18S rDNA, however, were characterized by limited resolution, low internal support and topological incongruence. Therefore genomic regions evolving more rapidly have been used in subsequent studies. Comparative sequencing of the matK gene and the flanking trnK intron region as well as combined analyses based on plastid matK, atpB, rbcL, and nuclear 18S rDNA have effectively improved resolution and internal support. Tree topologies revealed Caryophyllales s.l. as monophyletic group and indicated a clear division into two sister clades, the “core” and the “non-core” Caryophyllales (with Rhabdodendraceae and Simmondsiaceae with unclear affinities). Contrary to the “core” group (with Asteropeiaceae and Physenaceae as successive sister groups), which corresponds largely to the previous circumscription of the order, the monophyly of “non-core” Caryophyllales comprising Polygonaceae, Plumbaginaceae, Frankeniaceae, and Tamaricaceae along with the carnivorous families Droseraceae, Nepenthaceae, Drosophyllaceae, Dioncophyllaceae, and Ancistrocladaceae are a recent discovery. Based on reliable tree topologies it is hypothesized that pitfall traps of Nepenthes and snap traps typical for Aldrovanda and Dionaea were derived from a common ancestor with adhesive flypaper traps. With exception of Triphyophyllum carnivory was secondarily lost in the remaining Dioncophyllaceae (Dioncophyllum, Habropetalum) and all taxa of Ancistrocladaceae.

References

  • 1 Adamec L.. Mineral nutrition of carnivorous plants: a review.  The Botanical Review. (1997);  63 273-299
  • 2 Adamec L.. Leaf absorption of mineral nutrients in carnivorous plants stimulates root nutrient uptake.  New Phytologist. (2002);  155 89-100
  • 3 Albert V. A., Williams S. E., Chase M. W.. Carnivorous plants: phylogeny and structural evolution.  Science. (1992);  257 1491-1495
  • 4 Angiosperm Phylogeny Group (APG) . An ordinal classification for the families of flowering plants.  Annals of the Missouri Botanical Garden. (1998);  85 531-553
  • 5 Angiosperm Phylogeny Group (APG II) . An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II.  Botanical Journal of the Linnean Society. (2003);  14 399-436
  • 6 Anderson J. A. R., Muller J.. Palynological study of a Holocene peat and a Miocene coal deposit from NW Borneo.  Review of Palaeobotany and Palynology. (1975);  19 291-351
  • 7 Arber A.. Water Plants: A Study of Aquatic Angiosperms. Cambridge, UK; United Press (1920)
  • 8 Barthlott W., Porembski S., Fischer E., Gemmel B.. First protozoa trapping plant found.  Nature. (1998);  392 447
  • 9 Barthlott W., Fischer E., Frahm. J. P., Seine R.. First experimental evidence for zoophagy in the hepatic Colura.  Plant Biology. (2000);  2 93-97
  • 10 Bringmann G., Pokorny F.. The naphthylisoquinoline alkaloids. Cordell, G. A., ed. The Alkaloids, Vol. 46. New York; Academic Press (1995): 127-271
  • 11 Bringmann G., Francois G., Ake Assi L., Schlauer J.. The alkaloids of Triphyophyllum pelatatum (Dioncophyllaceae).  Chimia. (1998);  52 18-28
  • 12 Bringmann G., Wenzel M., Bringmann H. P., Schlauer J., Ake Assi L., Haas F.. Uptake of the amino acid alanine by digestive leaves: proof for carnivory of the tropical liana Triphyophyllum peltatum (Dioncophyllaceae).  Carnivorous Plant Newsletters. (2001);  30 15-21
  • 13 Cameron K. M., Kenneth J., Wurdack K. J., Jobson R. W.. Molecular evidence for the common origin of snap-traps among carnivorous plants.  American Journal of Botany. (2002);  89 1503-1509
  • 14 Chanda S.. The pollen morphology of Droseraceae with special reference to taxonomy.  Pollen and Spores. (1965);  7 509-528
  • 15 Chandler G.E., Anderson J.W.. Studies on the nutrition and growth of Drosera species with reference to the carnivorous habit.  New Phytologist. (1976);  76 129-141
  • 16 Chase M. W., Soltis D. E., Olmstead R. G.. et al. . Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL.  Annals of the Missouri Botanical Garden. (1993);  80 528-580
  • 17 Cieslak T., Polepalli J. S., White A., Müller K., Borsch T., Barthlott W., Steiger J., Marchant A., Legendre L.. Phylogenetic analysis of Pinguicula (Lentibulariaceae): chloroplast DNA sequences and morphology support several geographically distinct radiations.  American Journal of Botany. (2005);  92 1723-1736
  • 18 Cronquist A.. An Integrated System of Classification of Flowering Plants. New York; Columbia University Press (1988)
  • 19 Cuenoud P., Savolainen V., Chatrou L. W., Powell M., Grayer R. J., Chase M. W.. Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences.  American Journal of Botany. (2002);  89 132-144
  • 20 Dahlgren G.. The last Dahlgrenogram. System of classification of the dicotyledons. Tan, K., ed. Plant Taxonomy, Phytogeography and Related Subjects (The Davis and Hedge Festschrift). Edinburgh; University Press (1989): 249-260
  • 21 Darwin C.. Insectivorous Plants. London, UK; John Murray (1875)
  • 23 Downie S. R., Olmstead R. G., Zurawski G., Soltis D. E., Soltis P. S., Watson J. C., Palmer J. D.. Six independent losses of the chloroplast DNA rpl2 intron in dicotyledons: molecular and phylogenetic implications.  Evolution. (1991);  45 1245-1259
  • 24 Downie S. R., Palmer J. D.. A chloroplast DNA phylogeny of Caryophyllales based on structural and inverted repeat restriction site variation.  Systematic Botany. (1994);  19 236-252
  • 25 Downie S. R., Katz-Downie D. S., Kyung-Jin C.. Relationships in the Caryophyllales as suggested by phylogenetic analyses of partial chloroplast DNA ORF2280 homolog sequences.  American Journal of Botany. (1997);  84 253-273
  • 26 Ellison A. M., Gotelli N. J.. Evolutionary ecology of carnivorous plants.  Trends in Ecology and Evolution. (2001);  16 623-629
  • 27 Erdtman G.. A note on the pollen morphology in the Ancistrocladaceae and Dioncophyllaceae. Veröffentlichungen des Geobotanischen Institutes, Stiftung Rübel, Heft 33. Zürich. (1958)
  • 28 Fay M. F., Cameron K. M., Prance G. T., Lledo M. D., Chase M. W.. Familial relationships of Rhabdodendron (Rhabdodendraceae). Plastid rbcL sequences indicate a caryophyllid placement.  Kew Bulletin. (1997);  52 923-932
  • 29 Fedotov V. V.. The genus Dioncophyllites in the eozene flora of Raitschika from the Amur district.  UDK. (1980);  56 985-987
  • 30 Giannasi D. E., Zurawski G., Learn G., Clegg M. T.. Evolutionary relationships of the Caryophyllidae based on comparative rbcL sequences.  Systematic Botany. (1992);  17 1-15
  • 31 Givnish T. J.. Ecology and evolution of carnivorous plants. Abrahamson W. G., ed. Plant Animal Interactions. New York; McGraw-Hill (1989)
  • 32 Gottwald H., Parameswaran N.. Das sekundäre Xylem und die systematische Stellung der Ancistrocladaceae und Dioncophyllaceae.  Botanische Jahrbücher für Systematik. (1968);  88 49-69
  • 33 Heslop-Harrison Y.. Enzyme release in carnivorous plants. Dingle, J. T. and Dean, R. T., eds. Lysozymes in Biology and Pathology. Amsterdam; North Holland Publishing Company (1975)
  • 34 Hess S., Frahm J. P., Theisen I.. Evidence of zoophagy second liverwort species, Pleurozia purpurea.  The Bryologist. (2005);  108 212-218
  • 35 Heubl G. R., Wistuba A.. A cytological study of the genus Nepenthes L. (Nepenthaceae).  Sendtnera. (1995);  4 169-174
  • 36 Hilu K. W., Borsch T., Müller K., Soltis D. E., Soltis P. S., Savolainen V., Chase M. W., Powell M. P., Alice L. A., Evans R., Sauquet H., Neinhuis C., Slotta T. A. B., Rohwer J. G., Campbell C. S., Chatrou L. W.. Angiosperm phylogeny based on matK sequence information.  American Journal of Botany. (2003);  90 1758-1776
  • 37 Hilu K. W., Liang H.. The matK gene: sequence variation and application in plant systematics.  American Journal of Botany. (1997);  84 1735-1741
  • 38 Hoot S. B., Magellon S., Crane  R P.. Phylogeny of basal eudicots based on three molecular data sets: atpB, rbcL, and 18S nuclear ribosomal DNA sequences.  Annals of the Missouri Botanical Garden. (1999);  86 1-32
  • 39 Johnson L. A., Soltis D. E.. matK DNA sequences and phylogenetic reconstruction in Saxifragaceae s.str.  Systematic Botany. (1994);  19 143-156
  • 40 Johnson L. A., Soltis D. E.. Phylogenetic inference in Saxifraga sensu stricto and Gilia (Polemoniaceae) using matK sequences.  Annals of the Missouri Botanical Garden. (1995);  82 149-175
  • 41 Juniper B. E., Robins R. J., Joel D. M.. The Carnivorous Plants. London, UK; Academic Press (1989)
  • 42 Kondo K.. The chromosome numbers of Striga asiatica and Triphyophyllum peltatum.  Phyton. (1973);  31 1
  • 43 Krutzsch W.. Über Nepenthes-Pollen im europäischen Tertiär.  Gleditschia. (1985);  13 89-93
  • 44 Krutzsch W.. Palaeogeography and historical phytogeography (palaeochorology) in the Neophyticum.  Plant Sytematics and Evolution. (1988);  162 5-61
  • 45 Lledo M. D., Crespo M. B., Cameron K. M., Fay M. F., Chase M. W.. Systematics of Plumbaginaceae based upon cladistic analysis of rbcL sequence data.  Systematic Botany. (1998);  23 21-29
  • 47 Meimberg H., Dittrich P., Bringmann G., Schlauer J., Heubl G. R.. Molecular phylogeny of Caryophyllidae s.l. based on matK sequences with special emphasis on carnivorous taxa.  Plant Biology. (2000);  2 218-228
  • 48 Meimberg H., Wistuba A., Dittrich P., Heubl G. R.. Molecular phylogeny of Nepenthaceae based on cladistic analysis of plastid trnK intron sequences.  Plant Biology. (2001);  3 164-175
  • 49 Meimberg H.. Molekular-systematische Untersuchungen an den Familien Nepenthaceae und Ancistrocladaceae sowie verwandter Taxa aus der Unterklasse Caryophyllidae s.l. Dissertation Universität München. http://edoc.ub.uni-muenchen.de/archive/00001078/01/Meimberg_Harald.pdf (2002)
  • 51 Metcalfe C. R.. The anatomical structure of the Dioncophyllaceae in relation to the taxonomic affinities of the family.  Kew Bulletin. (1951);  6 351-368
  • 52 Müller K., Borsch T., Legendre L., Porembski S., Theisen I., Barthlott W.. Evolution of carnivory in Lentibulariaceae and the Lamiales.  Plant Biology. (2004);  6 477-490
  • 53 Muller J.. Fossil pollen records of extant angiosperms.  Botanical Review. (1981);  47 1-142
  • 54 Nandi O., Chase M. W., Endress P. K.. A combined cladistic analysis of angiosperms using rbcL and non-molecular data sets.  Annals of the Missouri Botanical Garden. (1998);  79 249-265
  • 55 Neuhaus H., Link G.. The chloroplast tRNALys (UUU) gene from mustard (Sinapis alba) contains a class II intron potentially coding for a maturase-related polypeptide.  Current Genetics. (1987);  11 251-257
  • 56 Parkes D. M.. Adaptive mechanisms of surfaces and glands in some carnivorous plants. MSc Thesis, Monash University, Clayton, Victoria, Australia. (1980)
  • 57 Plachno B. J., Adamus K., Faber J., Kozlowski J.. Feeding behaviour of carnivorous Genlisea in the laboratory.  Acta Botanica Gallica. (2005);  152 159-164
  • 58 Rettig J. H., Wilson H. D., Manhart J.. Phylogeny of the Caryophyllales - gene sequence data.  Taxon. (1992);  41 201-209
  • 59 Rivadavia F., Kondo K., Kato M., Hasebe M.. Phylogeny of the sundews, Drosera (Droseraceae), based on chloroplast rbcL and nuclear 18S ribosomal DNA sequences.  American Journal of Botany. (2003);  90 123-130
  • 60 Savolainen V., Chase M. W., Hoot S. B., Morton C. M., Soltis D. E., Bayer C., Fay M. F., De Bruijn A. Y., Sullivan S., Qiu Y. L.. Phylogenetics of flowering plants based upon a combined analysis of plastid atpB and rbcL gene sequences.  Systematic Biology. (2000);  49 306-362
  • 61 Schlauer J.. “New” data relating to the evolution and phylogeny of some carnivorous plant families.  Carnivorous Plant Newsletters. (1997);  26 34-38
  • 62 Schlauer J., Nerz J., Rischer H.. Carnivorous plant chemistry.  Acta Botanica Gallica. (2005);  152 187-195
  • 63 Schmid R.. Die systematische Stellung der Dioncophyllaceen.  Botanische Jahrbücher für Systematik. (1964);  83 1-56
  • 64 Schnell D. E.. Carnivorous Plants of the United States and Canada. Winston-Salem, NC, USA; J. F. Blair (1976)
  • 65 Schulze W., Schulze E. D.. Insect capture and growth of the insectivorous Drosera rotundifolia.  Oecologia. (1990);  82 427-429
  • 66 Schulze W., Schulze E. D., Schulze I., Oren R.. Quantification of insect nitrogen utilization by the venus fly trap Dionaea muscipula catching prey with highly variable isotope signatures.  Journal of Experimental Botany. (2001);  52 1041-1049
  • 67 Seine R., Porembski S., Balduin M., Theisen I., Wilbert N., Barthlott W.. Different prey strategies of terrestrial and aquatic species of the carnivorous genus Utricularia (Lentibulariaceae).  Botanische Jahrbücher für Systematik. (2002);  124 71-76
  • 69 Soltis D. E.. et al. . Angiosperm phylogeny inferred from 18S ribosomal DNA sequences.  Annals of the Missouri Botanical Garden. (1997);  84 1-49
  • 70 Soltis D. E.. et al. . Angisoperm phylogeny inferred from 18S rDNA, rbcL and atpB sequences.  Botanical Journal of the Linnean Society. (2000);  133 381-461
  • 71 Studnicka M.. Observations on life strategies of Genlisea, Heliamphora and Utricularia in natural habitats.  Carnivorous Plant Newsletters. (2003);  32 57-61
  • 72 Thorne R. F.. An updated classification of the flowering plants.  Aliso. (1992);  13 365-389
  • 73 Von Kircheimer F.. Über das Vorkommen der Gattung Aldrovanda Linné im Alttertiär Thüringens.  Braunkohle. (1941);  40 308-311
  • 74 Williams A. E., Albert V. A., Chase  W M.. Relationships of Droseraceae: a cladistic analysis of rbcL sequence and morphological data.  American Journal of Botany. (1994);  81 1027-1037
  • 75 Yakubovskaya T. V.. The genus Aldrovanda (Droseraceae) in the pleistocene of the Belorussian SSR.  Botanicheskii Zhurnal. (1991);  76 109-118
  • 76 Ziegler H., Lüttge U.. Über die Resorption von 14C-Glutaminsäure durch sezernierende Nektarien.  Naturwissenschaften. (1959);  46 176-177

G. R. Heubl

Department Biologie I
Institut für Systematische Botanik
Ludwig-Maximilians-Universität München

Menzinger Straße 67

80638 München

Germany

Email: heubl@lrz.uni-muenchen.de

Guest Editor: S. Porembski