Plant Biol (Stuttg) 2006; 8(5): 680-687
DOI: 10.1055/s-2006-924286
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Diversification of CYCLOIDEA-like TCP Genes in the Basal Eudicot Families Fumariaceae and Papaveraceae s.str.

A. Kölsch1 , S. Gleissberg1
  • 1Institut für Spezielle Botanik, Johannes-Gutenberg-Universität, Bentzelweg 9 a, 55099 Mainz, Germany
Further Information

Publication History

Received: January 4, 2006

Accepted: April 28, 2006

Publication Date:
01 August 2006 (online)

Abstract

CYCLOIDEA-like genes belong to the TCP family of transcriptional regulators and have been shown to control different aspects of shoot development in various angiosperm lineages, including flower monosymmetry in asterids and axillary meristem growth in monocots. Genes related to the CYC gene from Antirrhinum show independent duplications in both asterids and rosids. However, it remains unclear to what extent this affected the evolution of flower symmetry and shoot branching in these and other eudicot lineages. Here, we show that CYC-like genes have also undergone duplications in two related Ranunculales families, Fumariaceae and Papaveraceae s.str. These families exhibit morphological diversity in flower symmetry and inflorescence architecture that is potentially related to functions of CYC-like genes. We present sequences of 14 CYC-related genes covering 9 genera. Phylogenetic analyses indicate the presence of three clades of CYC-like genes. Shared motifs in the region between the TCP and R domains of CYC-like genes between Fumariaceae, Papaveraceae s.str., and Aquilegia (Ranunculaceae) indicate that the observed duplications originated from a single CYC gene present in all Ranunculales. RT‐PCR expression data suggest that gene duplication and diversification in Fumariaceae and Papaveraceae s.str. was accompanied by divergence in expression patterns.

References

  • 1 Cubas P.. Floral zygomorphy, the recurring evolution of a successful trait.  Bioessays. (2004);  26 1175-1184
  • 2 Dahl A. E.. Taxonomic and morphological studies in Hypecoum sect. Hypecoum (Papaveraceae).  Plant Systematics and Evolution. (1989);  163 227-280
  • 3 Damerval C., Manuel M.. Independent evolution of Cycloidea-like sequences in several angiosperm taxa.  Comptes Rendus Palevol. (2003);  2 241-250
  • 4 Endress P. K.. Symmetry in flowers: diversity and evolution.  International Journal of Plant Sciences. (1999);  160 S3-S23
  • 5 Felsenstein J.. PHYLIP Phylogeny Inference Package software version 3.6. http://evolution.gs.washington.edu/phylip.html. (2004)
  • 6 Fukuhara T.. Seed and funicle morphology of Fumariaceae-Fumarioideae: systematic implications and evolutionary patterns.  International Journal of Plant Sciences. (1999);  160 151-180
  • 7 Gleissberg S., Groot E. P., Schmalz M., Eichert M., Kölsch A., Hutter S.. Developmental events leading to peltate leaf structure in Tropaeolum majus (Tropaeolaceae) are associated with expression domain changes of a YABBY gene.  Development, Genes and Evolution. (2005);  215 313-319
  • 8 Groot E. P., Sinha N., Gleissberg S.. Expression patterns of STM-like KNOX and Histone H4 genes in shoot development of the dissected-leaved basal eudicot plants Chelidonium majus and Eschscholzia californica (Papaveraceae).  Plant Molecular Biology. (2005);  58 317-331
  • 9 Hoot S. B., Kadereit J. W., Blattner F. R., Jork K. B., Schwarzbach A. E., Crane P. R.. Data congruence and phylogeny of the Papaveraceae s.l. based on four data sets: atpB and rbcL sequences, trnK restriction sites, and morphological characters.  Systematic Botany. (1997);  22 575-590
  • 10 Howarth D. G., Donoghue M. J.. Duplications in CYC-like genes from Dipsacales correlate with floral form.  International Journal of Plant Sciences. (2005);  166 357-370
  • 11 Judd W. S., Olmstead R. G.. A survey of tricolpate (eudicot) phylogenetic relationships.  American Journal of Botany. (2004);  91 1627-1644
  • 12 Lidén M.. Synopsis of Fumarioideae (Papaveraceae), with a monograph of the tribe Fumarieae.  Opera Botanica. (1986);  88 1-133
  • 13 Lidén M., Fukuhara T., Rylander J., Oxelman B.. Phylogeny and classification of Fumariaceae, with emphasis on Dicentra s.l., based on the plastid gene rps16 intron.  Plant Systematics and Evolution. (1997);  206 411-420
  • 14 Maddison D. R., Maddison W. P.. MacClade: Analysis of Phylogeny and Character Evolution. Sunderland; Sinauer (2003)
  • 15 Page R. D. M.. TREEVIEW. Tree drawing software for Apple Macintosh and Microsoft Windows. http://taxonomy.zoology.gla.ac.uk/rod/rod.html. (2000)
  • 16 Swofford D.. PAUP* Phylogenetic Analysis Using Parsimony software version 4.0b10. http://paup.csit.fsu.edu/. (2002)

S. Gleissberg

Institut für Spezielle Botanik
Johannes-Gutenberg-Universität

Bentzelweg 9 a

55099 Mainz

Germany

Email: gleissberg@uni-mainz.de

Editor: F. Salamini

    >