Plant Biol (Stuttg) 2006; 8(3): 314-325
DOI: 10.1055/s-2006-924120
Review Article

Georg Thieme Verlag Stuttgart KG · New York

Integration of Abscisic Acid Signalling into Plant Responses[1]

A. Christmann1 , D. Moes1 , A. Himmelbach1 , Y. Yang1 , Y. Tang1 , E. Grill1
  • 1Lehrstuhl für Botanik, Technische Universität München, Am Hochanger 4, 85354 Freising, Germany
Further Information

Publication History

Received: December 7, 2005

Accepted: March 24, 2006

Publication Date:
15 May 2006 (online)

Abstract

The phytohormone abscisic acid (ABA) plays a major role as an endogenous messenger in the regulation of plant's water status. ABA is generated as a signal during a plant's life cycle to control seed germination and further developmental processes and in response to abiotic stress imposed by salt, cold, drought, and wounding. The action of ABA can target specifically guard cells for induction of stomatal closure but may also signal systemically for adjustment towards severe water shortage. At the molecular level, the responses are primarily mediated by regulation of ion channels and by changes in gene expression. In the last years, the molecular complexity of ABA signal transduction surfaced more and more. Many proteins and a plethora of “secondary” messengers that regulate or modulate ABA-responses have been identified by analysis of mutants including gene knock-out plants and by applying RNA interference technology together with protein interaction analysis. The complexity possibly reflects intensive cross-talk with other signal pathways and the role of ABA to be part of and to integrate several responses. Despite the missing unifying concept, it is becoming clear that ABA action enforces a sophisticated regulation at all levels.

1 Financial sources: Deutsche Forschungsgemeinschaft, Fonds der Chemischen Industrie

References

  • 1 Abe H., Urao T., Ito T., Seki M., Shinozaki K., Yamaguchi-Shinozaki K.. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling.  Plant Cell. (2003);  15 63-78
  • 3 Albrecht V., Weinl S., Blazevic D., D'Angelo C., Batistic O., Kolukisaoglu U., Bock R., Schulz B., Harter K., Kudla J.. The calcium sensor CBL1 integrates plant responses to abiotic stresses.  The Plant Journal. (2003);  36 457-470
  • 4 Allen G. J., Murata Y., Chu S. P., Nafisi M., Schroeder J. I.. Hypersensitivity of abscisic acid-induced cytosolic calcium increases in the Arabidopsis farnesyltransferase mutant era1-2.  Plant Cell. (2002);  14 1649-1662
  • 5 Allen G. J., Chu S. P., Harrington C. L., Schumacher K., Hoffmann T., Tang Y. Y., Grill E., Schroeder J. I.. A defined range of guard cell calcium oscillation parameters encodes stomatal movements.  Nature. (2001);  411 1053-1057
  • 6 Apel K., Hirt H.. Reactive oxygen species: metabolism, oxidative stress, and signal transduction.  Annual Review of Plant Biology. (2004);  55 373-399
  • 7 Arigoni D., Sagner S., Latzel C., Eisenreich W., Bacher A., Zenk M. H.. Terpenoid biosynthesis from 1-deoxy-D-xylulose in higher plants by intramolecular skeletal rearrangement.  Proceedings of the National Academy of Sciences of the USA. (1997);  94 10600-10605
  • 8 Assmann S. M.. G protein signaling in the regulation of Arabidopsis seed germination.  Science's Signal Transduction Knowledge Environment. (2005);  308 cm11
  • 9 Barrero J. M., Piqueras P., González-Guzmán M., Serrano R., Rodriguez P. L., Ponce M. R., Micol J. L.. A mutational analysis of the ABA1 gene of Arabidopsis thaliana highlights the involvement of ABA in vegetative development.  Journal of Experimental Botany. (2005);  418 2071-2083
  • 10 Batistic O., Kudla J.. Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network.  Planta. (2004);  219 915-924
  • 11 Baxter-Burrell A., Yang Z., Springer P. S., Bailey-Serres J.. RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance.  Science. (2002);  296 2026-2028
  • 12 Beaudoin N., Serizet C., Gosti F., Giraudat J.. Interactions between abscisic acid and ethylene signaling cascades.  Plant Cell. (2000);  12 1103-1115
  • 13 Blatt M. R., Armstrong F.. K+ channels of stomatal guard cells: Abscisic-acid-evoked control of the outward-rectifier mediated by cytoplasmic pH.  Planta. (1993);  191 330-341
  • 14 Bright J., Desikan R., Hancock J. T., Weir I. S., Neill S. J.. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis.  The Plant Journal. (2006);  45 113-122
  • 15 Casimiro I., Beeckman T., Graham N., Bhalerao R., Zhang H., Casero P., Sandberg G., Bennett M. J.. Dissecting Arabidopsis lateral root development.  Trends in Plant Science. (2003);  8 165-171
  • 16 Chen Y., Ji F., Xie H., Liang J., Zhang J.. The regulator of G-protein signaling proteins involved in sugar and abscisic acid signaling in Arabidopsis seed germination.  Plant Physiology. (2006);  140 302-310
  • 17 Cheng S. H., Willmann M. R., Chen H. C., Sheen J.. Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family.  Plant Physiology. (2002 a);  129 469-485
  • 18 Cheng W. H., Endo A., Zhou L., Penney J., Chen H. C., Arroyo A., Leon P., Nambara E., Asami T., Seo M., Koshiba T., Sheen J.. A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions.  Plant Cell. (2002 b);  14 2723-2743
  • 19 Chiwocha S. D., Cutler A. J., Abrams S. R., Ambrose S. J., Yang J., Ross A. R., Kermode A. R.. The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination.  The Plant Journal. (2005);  42 35-48
  • 20 Christmann A., Hoffmann T., Teplova I., Grill E., Müller A.. Generation of active pools of abscisic acid revealed by in vivo imaging of water-stressed Arabidopsis.  Plant Physiology. (2005);  137 209-219
  • 21 Coursol S., Fan L. M., Le Stunff H., Spiegel S., Gilroy S., Assmann S. M.. Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins.  Nature. (2003);  423 651-654
  • 22 Cutler A. J., Rose P. A., Squires T. M., Loewen M. K., Shaw A. C., Quail J. W., Krochko J. E., Abrams S. R.. Inhibitors of abscisic acid 8′-hydroxylase.  Biochemistry. (2000);  39 13614-13624
  • 23 De Paepe A., Vuylsteke M., Van Hummelen P., Zabeau M., Van Der Straeten D.. Transcriptional profiling by cDNA-AFLP and microarray analysis reveals novel insights into the early response to ethylene in Arabidopsis.  The Plant Journal. (2004);  39 537-559
  • 24 Deak K. I., Malamy J.. Osmotic regulation of root system architecture.  The Plant Journal. (2005);  43 17-28
  • 25 Delessert C., Wilson I. W., Van Der Straeten D., Dennis E. S., Dolferus R.. Spatial and temporal analysis of the local response to wounding in Arabidopsis leaves.  Plant Molecular Biology. (2004);  55 165-181
  • 26 Desikan R., Griffiths R., Hancock J., Neill S.. A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana.  Proceedings of the National Academy of Sciences of the USA. (2002);  99 16314-16318
  • 27 Duckham S. C., Linforth R. S. T., Taylor I. B.. Abscisic acid-deficient mutants at the aba gene locus of Arabidopsis thaliana are impaired in the epoxidation of zeaxanthin.  Plant, Cell and Environment. (1991);  14 601-606
  • 28 Farras R., Ferrando A., Jasik J., Kleinow T., Okresz L., Tiburcio A., Salchert K., del Pozo C., Schell J., Koncz C.. SKP1-SnRK protein kinase interactions mediate proteasomal binding of a plant SCF ubiquitin ligase.  EMBO Journal. (2001);  20 2742-2756
  • 29 Fedoroff N. V.. Cross-talk in abscisic acid signaling.  Science's Signal Transduction Knowledge Environment. (2002);  RE10
  • 30 Finkelstein R. R., Gampala S. S., Rock C. D.. Abscisic acid signaling in seeds and seedlings.  Plant Cell. (2002);  14 (Suppl.) S15-S45
  • 31 Freiman R. N., Tjian R.. Regulating the regulators: lysine modifications make their mark.  Cell. (2003);  112 11-17
  • 32 Freire M. A., Pages M.. Functional characteristics of the maize RNA-binding protein MA16.  Plant Molecular Biology. (1995);  29 797-807
  • 33 Frey A., Audran C., Marin E., Sotta B., Marion-Poll A.. Engineering seed dormancy by the modification of zeaxanthin epoxidase gene expression.  Plant Molecular Biology. (1999);  39 1267-1274
  • 34 Fujita Y., Fujita M., Satoh R., Maruyama K., Parvez M. M., Seki M., Hiratsu K., Ohme-Takagi M., Shinozaki K., Yamaguchi-Shinozaki K.. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis.  Plant Cell. (2005);  17 3470-3488
  • 35 Garcia-Mata C., Lamattina L.. Nitric oxide and abscisic acid cross talk in guard cells.  Plant Physiology. (2002);  128 790-792
  • 36 Garcia-Mata C., Gay R., Sokolovski S., Hills A., Lamattina L., Blatt M. R.. Nitric oxide regulates K+ and Cl- channels in guard cells through a subset of abscisic acid-evoked signaling pathways.  Proceedings of the National Academy of Sciences of the USA. (2003);  100 11116-11121
  • 37 Gehring C. A., Irving H. R., Parish R. W.. Effects of auxin and abscisic acid on cytosolic calcium and pH in plant cells.  Proceedings of the National Academy of Sciences of the USA. (1990);  87 9645-9649
  • 38 Ghassemian M., Nambara E., Cutler S., Kawaide H., Kamiya Y., McCourt P.. Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis.  Plant Cell. (2000);  12 1117-1126
  • 39 Gonzalez-Guzman M., Abia D., Salinas J., Serrano R., Rodriguez P. L.. Two new alleles of the abscisic aldehyde oxidase 3 gene reveal its role in abscisic acid biosynthesis in seeds.  Plant Physiology. (2004);  135 325-333
  • 40 Gonzalez-Guzman M., Apostolova N., Belles J. M., Barrero J. M., Piqueras P., Ponce M. R., Micol J. L., Serrano R., Rodriguez P. L.. The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde.  Plant Cell. (2002);  14 1833-1846
  • 41 Grill E., Ziegler H.. A plant's dilemma.  Science. (1998);  282 252-253
  • 42 Guo F. Q., Okamoto M., Crawford N. M.. Identification of a plant nitric oxide synthase gene involved in hormonal signaling.  Science. (2003);  302 100-103
  • 43 Guo Y., Xiong L., Song C. P., Gong D., Halfter U., Zhu J. K.. A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis.  Developmental Cell. (2002);  3 233-244
  • 44 Hallouin M., Ghelis T., Brault M., Bardat F., Cornel D., Miginiac E., Rona J. P., Sotta B., Jeannette E.. Plasmalemma abscisic acid perception leads to RAB18 expression via phospholipase D activation in Arabidopsis suspension cells.  Plant Physiology. (2002);  130 265-272
  • 45 Han M. H., Goud S., Song L., Fedoroff N.. The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation.  Proceedings of the National Academy of Sciences of the USA. (2004 a);  101 1093-1098
  • 46 Han S. Y., Kitahata N., Sekimata K., Saito T., Kobayashi M., Nakashima K., Yamaguchi-Shinozaki K., Shinozaki K., Yoshida S., Asami T.. A novel inhibitor of 9-cis-epoxycarotenoid dioxygenase in abscisic acid biosynthesis in higher plants.  Plant Physiology. (2004 b);  135 1574-1582
  • 47 Harper J. F., Harmon A.. Plants, symbiosis and parasites: a calcium signalling connection.  Nature Reviews Molecular Cell Biology. (2005);  6 555-566
  • 48 Hattori T., Totsuka M., Hobo T., Kagaya Y., Yamamoto-Toyoda A.. Experimentally determined sequence requirement of ACGT-containing abscisic acid response element.  Plant and Cell Physiology. (2002);  43 136-140
  • 49 Hepler P. K.. Calcium: a central regulator of plant growth and development.  Plant Cell. (2005);  17 2142-2155
  • 50 Hetherington A. M.. Guard cell signaling.  Cell. (2001);  107 711-714
  • 51 Hetherington A. M., Brownlee C.. The generation of Ca(2+) signals in plants.  Annual Review of Plant Biology. (2004);  55 401-427
  • 52 Himmelbach A., Hoffmann T., Leube M., Hohener B., Grill E.. Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis.  EMBO Journal. (2002);  21 3029-3038
  • 53 Hoth S., Morgante M., Sanchez J. P., Hanafey M. K., Tingey S. V., Chua N. H.. Genome-wide gene expression profiling in Arabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abi1-1 mutant.  Journal of Cell Science. (2002);  115 4891-4900
  • 54 Hugouvieux V., Kwak J. M., Schroeder J. I.. An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis.  Cell. (2001);  106 477-487
  • 55 Hugouvieux V., Murata Y., Young J. J., Kwak J. M., Mackesy D. Z., Schroeder J. I.. Localization, ion channel regulation, and genetic interactions during abscisic acid signaling of the nuclear mRNA cap-binding protein, ABH1.  Plant Physiology. (2002);  130 1276-1287
  • 56 Hunt L., Mills L. N., Pical C., Leckie C. P., Aitken F. L., Kopka J., Müller-Röber B., McAinsh M. R., Hetherington A. M., Gray J. E.. Phospholipase C is required for the control of stomatal aperture by ABA.  The Plant Journal. (2003);  34 47-55
  • 57 Irving H. R., Gehring C. A., Parish R. W.. Changes in cytosolic pH and calcium of guard cells precede stomatal movements.  Proceedings of the National Academy of Sciences of the USA. (1992);  89 1790-1794
  • 58 Iuchi S., Kobayashi M., Yamaguchi-Shinozaki K., Shinozaki K.. A stress-inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea.  Plant Physiology. (2000);  123 553-562
  • 59 Iuchi S., Kobayashi M., Taji T., Naramoto M., Seki M., Kato T., Tabata S., Kakubari Y., Yamaguchi-Shinozaki K., Shinozaki K.. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis.  The Plant Journal. (2001);  27 325-333
  • 60 Jiang M., Zhang J.. Involvement of plasma-membrane NADPH oxidase in abscisic acid- and water stress-induced antioxidant defense in leaves of maize seedlings.  Planta. (2002);  215 1022-1030
  • 61 Johannesson H., Wang Y., Hanson J., Engstrom P.. The Arabidopsis thaliana homeobox gene ATHB5 is a potential regulator of abscisic acid responsiveness in developing seedlings.  Plant Molecular Biology. (2003);  51 719-729
  • 62 Johnson R. R., Wagner R. L., Verhey S. D., Walker-Simmons M. K.. The abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences.  Plant Physiology. (2002);  130 837-846
  • 2 Jones M. A., Shen J. J., Fu Y., Li H., Yang Z., Grierson C. S.. The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth.  Plant Cell. (2002);  14 763-776
  • 63 Jung J. Y., Kim Y. W., Kwak J. M., Hwang J. U., Young J., Schroeder J. I., Hwang I., Lee Y.. Phosphatidylinositol 3- and 4-phosphate are required for normal stomatal movements.  Plant Cell. (2002);  14 2399-2412
  • 64 Kang J. Y., Choi H. I., Im M. Y., Kim S. Y.. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling.  Plant Cell. (2002);  14 343-357
  • 65 Katagiri T., Ishiyama K., Kato T., Tabata S., Kobayashi M., Shinozaki K.. An important role of phosphatidic acid in ABA signaling during germination in Arabidopsis thaliana.  The Plant Journal. (2005);  43 107-117
  • 66 Kim K. N., Cheong Y. H., Grant J. J., Pandey G. K., Luan S.. CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. .  Plant Cell. (2003);  15 411-423
  • 67 Kizis D., Pages M.. Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway.  The Plant Journal. (2002);  30 679-689
  • 68 Kloc M., Zearfoss N. R., Etkin L. D.. Mechanisms of subcellular mRNA localization.  Cell. (2002);  108 533-544
  • 69 Klusener B., Young J. J., Murata Y., Allen G. J., Mori I. C., Hugouvieux V., Schroeder J. I.. Convergence of calcium signaling pathways of pathogenic elicitors and abscisic acid in Arabidopsis guard cells.  Plant Physiology. (2002);  130 2152-2163
  • 70 Kohler B., Blatt M. R.. Protein phosphorylation activates the guard cell Ca2+ channel and is a prerequisite for gating by abscisic acid.  The Plant Journal. (2002);  32 185-194
  • 71 Koiwa H., Barb A. W., Xiong L., Li F., McCully M. G., Lee B. H., Sokolchik I., Zhu J., Gong Z., Reddy M., Sharkhuu A., Manabe Y., Yokoi S., Zhu J. K., Bressan R. A., Hasegawa P. M.. C-terminal domain phosphatase-like family members (AtCPLs) differentially regulate Arabidopsis thaliana abiotic stress signaling, growth, and development.  Proceedings of the National Academy of Sciences of the USA. (2002);  99 10893-10898
  • 72 Kuhn J. M., Boisson-Dernier A., Dizon M. B., Maktabi M. H., Schroeder J. I.. The protein phosphatase AtPP2CA negatively regulates abscisic acid signal transduction in Arabidopsis, and effects of abh1 on AtPP2CA mRNA.  Plant Physiology. (2006);  140 127-139
  • 73 Kwak J. M., Mori I. C., Pei Z. M., Leonhardt N., Torres M. A., Dangl J. L., Bloom R. E., Bodde S., Jones J. D., Schroeder J. I.. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis.  EMBO Journal. (2003);  22 2623-2633
  • 74 Lange B. M., Rujan T., Martin W., Croteau R.. Isoprenoid biosynthesis: The evolution of two ancient and distinct pathways across genomes.  Proceedings of the National Academy of Sciences of the USA. (2000);  97 13172-13177
  • 75 Lemichez E., Wu Y., Sanchez J. P., Mettouchi A., Mathur J., Chua N. H.. Inactivation of AtRac1 by abscisic acid is essential for stomatal closure.  Genes and Development. (2001);  15 1808-1816
  • 76 Leonhardt N., Kwak J. M., Robert N., Waner D., Leonhardt G., Schroeder J. I.. Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant.  Plant Cell. (2004);  16 596-615
  • 77 Lefebvre V., North H., Frey A., Sotta B., Seo M., Okamoto M., Nambara E., Marion-Poll A.. Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy.  The Plant Journal. (2006);  45 309-319
  • 78 Levchenko V., Konrad K. R., Dietrich P., Roelfsema M. R., Hedrich R.. Cytosolic abscisic acid activates guard cell anion channels without preceding Ca2+ signals.  Proceedings of the National Academy of Sciences of the USA. (2005);  102 4203-4208
  • 79 Leyman B., Geelen D., Quintero F. J., Blatt M. R.. A tobacco syntaxin with a role in hormonal control of guard cell ion channels.  Science. (1999);  283 537-540
  • 80 Li J., Kinoshita T., Pandey S., Ng C. K., Gygi S. P., Shimazaki K., Assmann S. M.. Modulation of an RNA-binding protein by abscisic-acid-activated protein kinase.  Nature. (2002);  418 793-797
  • 81 Lichtenthaler H. K., Schwender J., Disch A., Rohmer M.. Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway.  FEBS Letters. (1997);  400 271-274
  • 82 Lois L. M., Lima C. D., Chua N. H.. Small ubiquitin-like modifier modulates abscisic acid signaling in Arabidopsis.  Plant Cell. (2003);  15 1347-1359
  • 83 Lopez-Molina L., Mongrand S., Kinoshita N., Chua N. H.. AFP is a novel negative regulator of ABA signaling that promotes ABI5 protein degradation.  Genes and Development. (2003);  17 410-418
  • 84 Lopez-Molina L., Mongrand S., McLachlin D. T., Chait B. T., Chua N. H.. ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination.  The Plant Journal. (2002);  32 317-328
  • 85 Marin E., Nussaume L., Quesada A., Gonneau M., Sotta B., Hugueney P., Frey A., Marion-Poll A.. Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana.  EMBO Journal. (1996);  15 2331-2342
  • 86 Mauch-Mani B., Mauch F.. The role of abscisic acid in plant-pathogen interactions.  Current Opinion in Plant Biology. (2005);  8 409-414
  • 87 Meinhard M., Grill E.. Hydrogen peroxide is a regulator of ABI1, a protein phosphatase 2C from Arabidopsis.  FEBS Letters. (2001);  508 443-446
  • 88 Meinhard M., Rodriguez P. L., Grill E.. The sensitivity of ABI2 to hydrogen peroxide links the abscisic acid-response regulator to redox signalling.  Planta. (2002);  214 775-782
  • 89 Merlot S., Gosti F., Guerrier D., Vavasseur A., Giraudat J.. The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway.  Plant Journal. (2001);  25 295-303
  • 90 Müller A., Düchting P., Weiler E. W.. A multiplex GC‐MS/MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana.  Planta. (2002);  216 44-56
  • 91 Mustilli A. C., Merlot S., Vavasseur A., Fenzi F., Giraudat J.. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production.  Plant Cell. (2002);  14 3089-3099
  • 92 Nambara E., Marion-Poll A.. Abscisic acid biosynthesis and catabolism.  Annual Review of Plant Biology. (2005);  56 165-185
  • 93 Nambara E., Suzuki M., Abrams S., McCarty D. R., Kamiya Y., McCourt P.. A screen for genes that function in abscisic acid signaling in Arabidopsis thaliana.  Genetics. (2002);  161 1247-1255
  • 94 Narusaka Y., Nakashima K., Shinwari Z. K., Sakuma Y., Furihata T., Abe H., Narusaka M., Shinozaki K., Yamaguchi-Shinozaki K.. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses.  The Plant Journal. (2003);  34 137-148
  • 95 Neill S. J., Desikan R., Clarke A., Hancock J. T.. Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells.  Plant Physiology. (2002);  128 13-16
  • 96 Ng C. K., Carr K., McAinsh M. R., Powell B., Hetherington A. M.. Drought-induced guard cell signal transduction involves sphingosine-1-phosphate.  Nature. (2001);  410 596-599
  • 97 Nishimura N., Kitahata N., Seki M., Narusaka Y., Narusaka M., Kuromori T., Asami T., Shinozaki K., Hirayama T.. Analysis of ABA hypersensitive germination2 revealed the pivotal functions of PARN in stress response in Arabidopsis.  The Plant Journal. (2005);  44 972-984
  • 98 Niyogi K. K., Grossman A. R., Bjorkman O.. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion.  Plant Cell. (1998);  10 1121-1134
  • 99 O'Rourke S. M., Herskowitz I., O'Shea E. K.. Yeast go the whole HOG for the hyperosmotic response.  Trends in Genetics. (2002);  18 405-412
  • 100 Osakabe Y., Maruyama K., Seki M., Satou M., Shinozaki K., Yamaguchi-Shinozaki K.. Leucine-rich repeat receptor-like kinase1 is a key membrane-bound regulator of abscisic acid early signaling in Arabidopsis. .  Plant Cell. (2005);  17 1105-1119
  • 101 Paciorek T., Zazimalova E., Ruthardt N., Petrasek J., Stierhof Y. D., Kleine-Vehn J., Morris D. A., Emans N., Jurgens G., Geldner N., Friml J.. Auxin inhibits endocytosis and promotes its own efflux from cells.  Nature. (2005);  435 1251-1256
  • 102 Pandey G. K., Cheong Y. H., Kim K. N., Grant J. J., Li L., Hung W., D'Angelo C., Weinl S., Kudla J., Luan S.. The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis.  Plant Cell. (2004);  16 1912-1924
  • 103 Pandey S., Assmann S. M.. The Arabidopsis putative G protein-coupled receptor GCR1 interacts with the G protein alpha subunit GPA1 and regulates abscisic acid signaling.  Plant Cell. (2004);  16 1616-1632
  • 104 Pei Z. M., Murata Y., Benning G., Thomine S., Klusener B., Allen G. J., Grill E., Schroeder J. I.. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells.  Nature. (2000);  406 731-734
  • 113 Pierce M., Raschke K.. The relationship between abscisic acid accumulation and turgor.  Plant Physiology. (1978);  61 (Suppl.) 25
  • 105 Qin X., Zeevaart J. A.. The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean.  Proceedings of the National Academy of Sciences of the USA. (1999);  96 15354-15361
  • 106 Qin X., Zeevaart J. A.. Overexpression of a 9-cis-epoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance.  Plant Physiology. (2002);  128 544-551
  • 107 Razem F. A., El-Kereamy A., Abrams S. R., Hill R. D.. The RNA-binding protein FCA is an abscisic acid receptor.  Nature. (2006);  439 290-294
  • 108 Ritchie S. M., Swanson S. J., Gilroy S.. From common signalling components to cell specific responses: insights from the cereal aleurone.  Physiologia Plantarum. (2002);  115 342-351
  • 109 Saez A., Apostolova N., Gonzalez-Guzman M., Gonzalez-Garcia M. P., Nicolas C., Lorenzo O., Rodriguez P. L.. Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signalling.  The Plant Journal. (2004);  37 354-369
  • 110 Saito S., Hirai N., Matsumoto C., Ohigashi H., Ohta D., Sakata K., Mizutani M.. Arabidopsis CYP707 As encode (+)-abscisic acid 8′-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid.  Plant Physiology. (2004);  134 1439-1449
  • 111 Sanchez J. P., Chua N. H.. Arabidopsis PLC1 is required for secondary responses to abscisic acid signals.  Plant Cell. (2001);  13 1143-1154
  • 112 Sang Y., Zheng S., Li W., Huang B., Wang X.. Regulation of plant water loss by manipulating the expression of phospholipase Dα.  The Plant Journal. (2001);  28 135-144
  • 114 Schroeder J. I., Allen G. J., Hugouvieux V., Kwak J. M., Waner D.. Guard cell signal transduction.  Annual Review of Plant Physiology and Plant Molecular Biology. (2001);  52 627-658
  • 115 Seki M., Ishida J., Narusaka M., Fujita M., Nanjo T., Umezawa T., Kamiya A., Nakajima M., Enju A., Sakurai T., Satou M., Akiyama K., Yamaguchi-Shinozaki K., Carninci P., Kawai J., Hayashizaki Y., Shinozaki K.. Monitoring the expression pattern of around 7000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray.  Functional and Integrative Genomics. (2002);  2 282-291
  • 116 Seo M., Peeters A. J., Koiwai H., Oritani T., Marion-Poll A., Zeevaart J. A., Koornneef M., Kamiya Y., Koshiba T.. The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves.  Proceedings of the National Academy of Sciences of the USA. (2000);  97 12908-12913
  • 117 Sharp R. E.. Interaction with ethylene: changing views on the role of abscisic acid in root and shoot growth responses to water stress.  Plant, Cell and Environment. (2002);  25 211-222
  • 119 Sheen J.. Mutational analysis of protein phosphatase 2C involved in abscisic acid signal transduction in higher plants.  Proceedings of the National Academy of Sciences of the USA. (1998);  95 975-980
  • 118 Shinozaki K., Yamaguchi-Shinozaki K.. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways.  Current Opinion in Plant Biology. (2000);  3 217-223
  • 120 Slovik S., Daeter W., Hartung W.. Compartmental redistribution and long-distance transport of abscisic acid (ABA) in plants as influenced by environmental changes in the rhizosphere - a biomathematical model.  Journal of Experimental Botany. (1995);  46 881-894
  • 121 Sokolovski S., Hills A., Gay R., Garcia-Mata C., Lamattina L., Blatt M. R.. Protein phosphorylation is a prerequisite for intracellular Ca2+ release and ion channel control by nitric oxide and abscisic acid in guard cells.  The Plant Journal. (2005);  43 520-529
  • 122 Spollen W. G., LeNoble M. E., Samuels T. D., Bernstein N., Sharp R. E.. Abscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production.  Plant Physiology. (2000);  122 967-976
  • 123 Taylor I. B., Burbidge A., Thompson A. J.. Control of abscisic acid synthesis.  Journal of Experimental Botany. (2000);  51 1563-1574
  • 124 Thompson A. J., Jackson A. C., Symonds R. C., Mulholland B. J., Dadswell A. R., Blake P. S., Burbidge A., Taylor I. B.. Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid.  The Plant Journal. (2000);  23 363-374
  • 126 Ton J., Mauch-Mani B.. Beta-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose.  The Plant Journal. (2004);  38 119-130
  • 127 Uno Y., Furihata T., Abe H., Yoshida R., Shinozaki K., Yamaguchi-Shinozaki K.. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions.  Proceedings of the National Academy of Sciences of the USA. (2000);  97 11632-11637
  • 128 Urao T., Yakubov B., Satoh R., Yamaguchi-Shinozaki K., Seki M., Hirayama T., Shinozaki K.. A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor.  Plant Cell. (1999);  11 1743-1754
  • 129 Vavasseur A., Raghavendra A. S.. Guard cell metabolism and CO2 sensing.  The New Phytologist. (2005);  165 665-682
  • 130 Wang X. Q., Ullah H., Jones A. M., Assmann S. M.. G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells.  Science. (2001);  292 2070-2072
  • 131 Wu Y., Sanchez J. P., Lopez-Molina L., Himmelbach A., Grill E., Chua N. H.. The abi1-1 mutation blocks ABA signaling downstream of cADPR action.  The Plant Journal. (2003);  34 307-315
  • 132 Xin Z., Zhao Y., Zheng Z. L.. Transcriptome analysis reveals specific modulation of abscisic acid signaling by ROP10 Small GTPase in Arabidopsis.  Plant Physiology. (2005);  139 1350-1365
  • 133 Xiong L., Ishitani M., Lee H., Zhu J. K.. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression.  Plant Cell. (2001 a);  13 2063-2083
  • 134 Xiong L., Lee H., Ishitani M., Zhu J. K.. Regulation of osmotic stress-responsive gene expression by the LOS6/ABA1 locus in Arabidopsis.  Journal of Biological Chemistry. (2002);  277 8588-8596
  • 135 Xiong L., Lee B., Ishitani M., Lee H., Zhang C., Zhu J. K.. FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. .  Genes and Development. (2001 b);  15 1971-1984
  • 136 Xiong L., Gong Z., Rock C. D., Subramanian S., Guo Y., Xu W., Galbraith D., Zhu J. K.. Modulation of abscisic acid signal transduction and biosynthesis by an Sm-like protein in Arabidopsis.  Developmental Cell. (2001 c);  1 771-781
  • 137 Yang Y., Sulpice R., Himmelbach A., Meinhard M., Christmann A., Grill E.. Fibrillin expression is regulated by ABA response regulators and is involved in abscisic acid-mediated photoprotection.  Proceedings of the National Academy of Sciences of the USA. (2006);  103 6061-6066
  • 138 Yang Z.. Small GTPases: versatile signaling switches in plants.  Plant Cell. (2002);  14 S375-S388
  • 139 Yesbergenova Z., Yang G., Oron E., Soffer D., Fluhr R., Sagi M.. The plant Mo-hydroxylases aldehyde oxidase and xanthine dehydrogenase have distinct reactive oxygen species signatures and are induced by drought and abscisic acid.  The Plant Journal. (2005);  42 862-876
  • 140 Yoshida R., Umezawa T., Mizoguchi T., Takahashi S., Takahashi F., Shinozaki K.. The regulatory domain of srk2e/ost1/snrk2.6 interacts with abi1 and integrates aba and osmotic stress signals controlling stomatal closure in Arabidopsis.  Journal of Biological Chemistry. (2006 a);  281 5310-5318
  • 141 Yoshida T., Nishimura N., Kitahata N., Kuromori T., Ito T., Asami T., Shinozaki K., Hirayama T.. ABA-hypersensitive germination3 encodes a protein phosphatase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs.  Plant Physiology. (2006 b);  140 115-126
  • 142 Zalejski C., Zhang Z., Quettier A. L., Maldiney R., Bonnet M., Brault M., Demandre C., Miginiac E., Rona J. P., Sotta B., Jeannette E.. Diacylglycerol pyrophosphate is a second messenger of abscisic acid signaling in Arabidopsis thaliana suspension cells.  The Plant Journal. (2005);  42 145-152
  • 143 Zeevaart J. A. D., Creelman R. A.. Metabolism and physiology of abscisic acid.  Annual Review of Plant Physiology and Plant Molecular Biology. (1988);  39 439-473
  • 144 Zhang D. P., Chen S. W., Peng Y. B., Shen Y. Y.. Abscisic acid-specific binding sites in the flesh of developing apple fruit.  Journal of Experimental Botany. (2001);  52 2097-2103
  • 145 Zhang D. P., Wu Z. Y., Li X. Y., Zhao Z. X.. Purification and identification of a 42-kilodalton abscisic acid-specific-binding protein from epidermis of broad bean leaves.  Plant Physiology. (2002);  128 714-725
  • 146 Zhang W., Qin C., Zhao J., Wang X.. Phospholipase D alpha 1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling.  Proceedings of the National Academy of Sciences of the USA. (2004);  101 9508-9513
  • 147 Zhang X., Garreton V., Chua N. H.. The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation.  Genes and Development. (2005);  19 1532-1543
  • 148 Zheng Z. L., Nafisi M., Tam A., Li H., Crowell D. N., Chary S. N., Schroeder J. I., Shen J., Yang Z.. Plasma membrane-associated ROP10 small GTPase is a specific negative regulator of abscisic acid responses in Arabidopsis.  Plant Cell. (2002);  14 2787-2797
  • 149 Zhou R., Cutler A. J., Ambrose S. J., Galka M. M., Nelson K. M., Squires T. M., Loewen M. K., Jadhav A. S., Ross A. R., Taylor D. C., Abrams S. R.. A new abscisic acid catabolic pathway.  Plant Physiology. (2004);  134 361-369
  • 150 Zhu J., Gong Z., Zhang C., Song C. P., Damsz B., Inan G., Koiwa H., Zhu J. K., Hasegawa P. M., Bressan R. A.. OSM1/SYP61: a syntaxin protein in Arabidopsis controls abscisic acid-mediated and non-abscisic acid-mediated responses to abiotic stress.  Plant Cell. (2002);  14 3009-3028
  • 151 Zhu J. K.. Salt and drought stress signal transduction in plants.  Annual Review of Plant Biology. (2002);  53 247-273

1 Financial sources: Deutsche Forschungsgemeinschaft, Fonds der Chemischen Industrie

E. Grill

Lehrstuhl für Botanik
Technische Universität München

Am Hochanger 4

85354 Freising

Germany

Email: grill@wzw.tum.de

Guest Editor: R. Reski