Plant Biol (Stuttg) 2006; 8(6): 770-777
DOI: 10.1055/s-2006-924101
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Smallest Angiosperm Genomes Found in Lentibulariaceae, with Chromosomes of Bacterial Size

J. Greilhuber1 , T. Borsch2 , K. Müller2 , A. Worberg2 , S. Porembski3 , W. Barthlott2
  • 1Department of Botanical Systematics and Evolutionary Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
  • 2Nees Institute for Biodiversity of Plants, University of Bonn, Meckenheimer Allee 170, 53115 Bonn, Germany
  • 3Institute of Biodiversity Research, Department of Botany, University of Rostock, Wismarsche Straße 8, 18051 Rostock, Germany
Further Information

Publication History

Received: November 27, 2005

Accepted: March 7, 2006

Publication Date:
03 January 2007 (online)

Abstract

Nuclear holoploid genome sizes (C-values) have been estimated to vary about 800-fold in angiosperms, with the smallest established 1C-value of 157 Mbp recorded in Arabidopsis thaliana. In the highly specialized carnivorous family Lentibulariaceae now three taxa have been found that exhibit significantly lower values: Genlisea margaretae with 63 Mbp, G. aurea with 64 Mbp, and Utricularia gibba with 88 Mbp. The smallest mitotic anaphase chromatids in G. aurea have 2.1 Mbp and are thus of bacterial size (NB: E. coli has ca. 4 Mbp). Several Utricularia species range somewhat lower than A. thaliana or are similar in genome size. The highest 1C-value known from species of Lentibulariaceae was found in Genlisea hispidula with 1510 Mbp, and results in about 24-fold variation for Genlisea and the Lentibulariaceae. Taking into account these new measurements, genome size variation in angiosperms is now almost 2000-fold. Genlisea and Utricularia are plants with terminal positions in the phylogeny of the eudicots, so that the findings are relevant for the understanding of genome miniaturization. Moreover, the Genlisea-Utricularia clade exhibits one of the highest mutational rates in several genomic regions in angiosperms, what may be linked to specialized patterns of genome evolution. Ultrasmall genomes have not been found in Pinguicula, which is the sister group of the Genlisea-Utricularia clade, and which does not show accelerated mutational rates. C-values in Pinguicula varied only 1.7-fold from 487 to 829 Mbp.

References

  • 1 Albach D. C., Greilhuber J.. Genome size variation and evolution in Veronica. .  Annals of Botany. (2004);  94 897-911
  • 2 Antonius K., Ahokas H.. Flow-cytometric determination of polyploidy level in spontaneous clones of strawberries.  Hereditas. (1996);  124 285-290
  • 3 Arabidopsis Genome Initiative . Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. .  Nature. (2000);  408 796-815
  • 4 Bachmann K.. Nuclear DNA and developmental rate in frogs.  Quarterly Journal of the Florida Academy of Sciences. (1972);  35 225-231
  • 5 Barthlott W., Porembski S., Seine R., Theisen I.. Karnivoren. Biologie und Kultur fleischfressender Pflanzen. Stuttgart; Ulmer (2004)
  • 6 Bennett M. D.. Nuclear DNA content and minimum generation time in herbaceous plants.  Proceedings of the Royal Society of London, Series B, Biological Sciences. (1972);  181 109-135
  • 8 Bennett M. D., Leitch I. J.. Genome size evolution in plants. Gregory, T. R., ed. The Evolution of the Genome. Amsterdam, New York; Elsevier Academic Press (2005 a): 89-162
  • 9 Bennett M. D., Leitch I. J.. Plant DNA C-values database (release 6.0, Oct. 2005). http://www.rbgkew.org.uk/cval/homepage.html. (2005 b)
  • 10 Bennett M. D., Leitch I. J.. Plant genome size research: a field in focus.  Annals of Botany. (2005 c);  95 1-6
  • 11 Bennett M. D., Leitch I. J.. Nuclear DNA amounts in angiosperms: progress, problems and prospects.  Annals of Botany. (2005 d);  95 45-90
  • 12 Bennett M. D., Smith J. B.. Nuclear DNA amounts in angiosperms.  Philosophical Transactions of the Royal Society of London B. (1991);  334 309-345
  • 13 Bennett M. D., Leitch I. J., Hanson L.. DNA amounts in two samples of angiosperm weeds.  Annals of Botany. (1998);  82 (Suppl. A) 121-134
  • 14 Bennett M. D., Leitch I. J., Price H. J., Johnston J. S.. Comparisons with Caenorhabditis (100 Mb) and Drosophila (175 Mb) using flow cytometry show genome size in Arabidopsis to be 157 Mb and thus 25 % larger than the Arabidopsis genome initiative estimate of 125 Mb.  Annals of Botany. (2003);  91 547-557
  • 15 Bergthorsson U., Ochmann H.. Heterogeneity of genome sizes among natural isolates of Escherichia coli. .  Journal of Bacteriology. (1995);  177 5784-5789
  • 16 Cavalier-Smith T.. Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox.  Journal of Cell Science. (1978);  34 247-278
  • 17 Cavalier-Smith T.. Cell volume and the evolution of eukaryotic genome size. Cavalier-Smith, T., ed. The Evolution of Genome Size. Chichester; John Wiley and Sons (1985): 104-184
  • 18 Cieslack T., Polepalli J. S., White A., Müller K., Borsch T., Barthlott W., Steiger J., Marchant A., Legendre L.. Phylogenetic analysis of Pinguicula (Lentibulariaceae): chloroplast DNA sequences and morphology reveal several geographically distinct radiations.  American Journal of Botany. (2005);  92 1723-1736
  • 19 Doležel J., Bartoš J., Voglmayr H., Greilhuber J.. Nuclear DNA content and genome size of trout and human.  Cytometry. (2003);  51A 127-128
  • 20 Fischer E., Barthlott W., Seine R., Theisen I.. Lentibulariaceae. Kubitzki, K., ed. The Families and Genera of Vascular Plants. Berlin; Springer (2004)
  • 21 Fischer E., Porembski S., Barthlott W.. Revision of the genus Genlisea (Lentibulariaceae) in Africa and Madagascar with notes on ecology and phytogeography.  Nordic Journal of Botany. (2000);  20 291-318
  • 22 Francis D. M., Hulbert S. H., Michelmore R. W.. Genome size and complexity of the obligate fungal pathogen, Bremia lactucae. .  Experimental Mycology. (1990);  14 299-309
  • 23 Govindaraju D. R., Cullis C. A.. Modulation of genome size in plants: the influence of breeding systems and neighbourhood size.  Evolutionary Trends in Plants. (1991);  5 43-51
  • 24 Gregory T. R.. A bird's eye view of the C-value enigma: genome size, cell size, and metabolic rate in the class Aves.  Evolution. (2002);  56 121-130
  • 25 Gregory T. R.. Variation across amphibian species in the size of the nuclear genome supports a pluralistic, hierarchical approach to the C-value enigma.  Biological Journal of the Linnean Society. (2003);  79 329-339
  • 26 Gregory T. R.. Genome size evolution in animals. Gregory, T. R., ed. The Evolution of the Genome. Amsterdam, New York; Elsevier Academic Press (2005): 3-87
  • 27 Greilhuber J.. “Self-tanning” - a new and important source of stoichiometric error in cytophotometric determination of nuclear DNA content in plants.  Plant Systematics and Evolution. (1987);  158 87-96
  • 28 Greilhuber J.. Chromosomes of the monocotyledons (general aspects). Rudall, P. J., Cribb, P. J., Cutler, D. F., and Humphries, C. J., eds. Monocotyledons: Systematics and Evolution. Kew; Royal Botanic Gardens (1995): 379-414
  • 29 Greilhuber J.. Intraspecific variation in genome size: a critical reassessment.  Annals of Botany. (1998);  82 (Suppl. A) 27-35
  • 30 Greilhuber J.. Intraspecific variation in genome size in angiosperms: identifying its existence.  Annals of Botany. (2005);  95 91-98
  • 31 Greilhuber J., Ebert I.. Genome size variation in Pisum sativum. .  Genome. (1994);  37 646-655
  • 32 Greilhuber J., Temsch E. M.. Feulgen densitometry: some observations relevant to best practice in quantitative nuclear DNA content determination.  Acta Botanica Croatica. (2001);  60 285-298
  • 33 Greilhuber J., Doležel J., Lysàk M., Bennett M. D.. The origin, evolution, and proposed stabilisation of the terms' genome size and “C-value” to describe nuclear DNA contents.  Annals of Botany. (2005 a);  95 255-260
  • 34 Greilhuber J., Borsch T., Müller K., Worberg A., Porembski S., Barthlott W.. Genomes of Lentibulariaceae: some smaller than in Arabidopsis thaliana, and with chromosomes of bacterial size. In XVII International Botanical Congress, Vienna, Austria, 17 - 23 July 2005, Abstracts. (2005 b): 138
  • 35 Hanson L., McMahon K. A., Johnson M. A. T., Bennett M. D.. First nuclear DNA C-values for 25 angiosperm families.  Annals of Botany. (2001);  87 251-258
  • 36 't Hart H.. Evolution and classification of the European Sedum species (Crassulaceae).  Flora Mediterranea. (1991);  1 31-61
  • 37 Hegnauer R.. Chemotaxonomie der Pflanzen, Vol. 4. Basel, Stuttgart; Birkhäuser Verlag (1966)
  • 38 Hegnauer R.. Chemotaxonomie der Pflanzen, Vol. 8. Basel, Boston, Berlin; Birkhäuser Verlag (1989)
  • 39 Jobson R. W., Albert V. A.. Molecular rates parallel diversification contrasts between carnivorous plant sister lineages.  Cladistics. (2002);  18 127-136
  • 40 Jobson R. W., Playford J., Cameron K. M., Albert V. A.. Molecular phylogenetics of Lentibulariaceae inferred from plastid rps16 intron and trnL‐F DNA sequences: implications for character evolution and biogeography.  Systematic Botany. (2003);  28 157-171
  • 41 Juniper B. E., Robins R. J., Joel D. M.. The Carnivorous Plants. London; Academic Press (1989)
  • 42 Krisai R., Greilhuber J.. Cochlearia pyrenaica DC., das Löffelkraut, in Oberösterreich (mit Anmerkungen zur Karyologie und zur Genomgröße).  Beiträge zur Naturkunde Oberösterreichs. (1997);  5 151-160
  • 43 Leitch I. J., Chase M. W., Bennett M. D.. Phylogenetic analysis of C‐DNA values provides evidence for a small ancestral genome size in flowering plants.  Annals of Botany. (1998);  82 85-94
  • 44 Leutwiler L. S., Hough-Evans B. R., Meyerowitz E. M.. The DNA of Arabidopsis thaliana. .  Molecular and General Genetics. (1984);  194 15-23
  • 45 Lloyd F. E.. Carnivorous Plants. Waltham, Massachusetts; Chronica Botanica Co (1942)
  • 46 Müller K., Borsch T.. Phylogenetics of Utricularia (Lentibulariaceae) and molecular evolution of the trnK intron in a lineage with high substitutional rates.  Plant Systematics and Evolution. (2005);  250 39-67
  • 47 Müller K., Borsch T., Legendre L., Porembski S., Theisen I., Barthlott W.. Evolution of carnivory in Lamiales and Lentibulariaceae.  Plant Biology. (2004);  6 477-490
  • 48 Müller K. F., Borsch T., Legendre L., Porembski S., Barthlott W.. Recent progress in understanding the evolution of carnivorous Lentibulariaceae (Lamiales).  Plant Biology. (2006);  8 748-757
  • 49 Murray B. G.. When does intraspecific C-value variation become taxonomically significant?.  Annals of Botany. (2005);  95 119-125
  • 50 Nishikawa K., Furuta Y., Ishitoba K.. Chromosomal evolution in genus Carex as viewed from nuclear DNA content, with special reference to its aneuploidy.  Japanese Journal of Genetics. (1984);  59 465-472
  • 51 Ohri D.. Climate and growth form: the consequences for genome size in plants.  Plant Biology. (2005);  7 449-458
  • 52 Olmstead R. G., DePamphilis C. W., Wolfe A. D., Young N. D., Elisons W. J., Reeves P. A.. Disintegration of the Scrophulariaceae.  American Journal of Botany. (2001);  88 348-361
  • 53 Rahmanzadeh R., Müller K., Fischer E., Bartels D., Borsch T.. Linderniaceae and Gratiolaceae are further lineages distinct from Scrophulariaceae (Lamiales).  Plant Biology. (2005);  7 67-78
  • 54 Soltis D. E., Soltis P. S., Bennett M. D., Leitch I. J.. Evolution of genome size in the angiosperms.  American Journal of Botany. (2003);  90 1596-1603
  • 55 Van't Hof J., Sparrow A. K.. A relationship between DNA content, nuclear volume, and minimum mitotic cycle time.  Proceedings of the National Academy of Sciences of the USA. (1963);  49 897-902
  • 56 Vilhar B., Greilhuber J., Dolenc Koce J., Temsch E. M., Dermastia M.. Plant genome size measurement with DNA image cytometry.  Annals of Botany. (2001);  87 719-728

J. Greilhuber

Department of Botanical Systematics and Evolutionary Research
University of Vienna

Rennweg 14

1030 Vienna

Austria

Email: johann.greilhuber@univie.ac.at

Editor: H. Rennenberg