Plant Biol (Stuttg) 2006; 8(5): 653-661
DOI: 10.1055/s-2006-924085
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Modification of Primary and Secondary Metabolism of Potato Plants by Nitrogen Application Differentially Affects Resistance to Phytophthora infestans and Alternaria solani

K. Mittelstraß1 , D. Treutter2 , M. Pleßl1 , W. Heller3 , E. F. Elstner1 , I. Heiser1
  • 1Institute of Phytopathology, Centre of Life and Food Sciences Weihenstephan, Technische Universität München, Am Hochanger 2, 85350 Freising, Germany
  • 2Institute of Fruit Science, Centre of Life and Food Sciences Weihenstephan, Technische Universität München, Alte Akademie 16, 85350 Freising, Germany
  • 3GSF - National Research Center for Environment and Health, Institute of Biochemical Plant Pathology, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
Weitere Informationen

Publikationsverlauf

Received: May 13, 2005

Accepted: March 15, 2006

Publikationsdatum:
05. Juli 2006 (online)

Abstract

Potato plants (Solanum tuberosum L. cv. Indira) were grown at two levels of N supply in the greenhouse. Plants supplied with 0.8 g N per plant (high N variant) showed significantly increased biomass as compared to plants without additional N fertilisation (low N variant). C/N ratio was lower and protein content was higher in leaves of the high N variant. The concentration of chlorogenic acids and flavonols was significantly lower in leaves from the high N variant. Whereas resistance to Alternaria solani increased when plants were supplied with additional nitrogen, these plants were more susceptible to Phytophthora infestans. After infection with both pathogens, we found a strong induction of p-coumaroylnoradrenaline and p-coumaroyloctopamine, which are identified for the first time in potato leaves and are discussed as resistance factors of other solanaceous plants.

References

  • 1 Andreu A., Oliva C., Distel S., Daleo G.. Production of phytoalexins, glycoalkaloids and phenolics in leaves and tubers of potato cultivars with different degrees of field resistance after infection with Phytophthora infestans.  Potato Research. (2001);  44 1-9
  • 2 Barcley G. M., Murphy H. J., Manzer F. E., Hutchinson F. E.. Effects of differential rates of nitrogen and phosphorus on early blight in potatoes.  American Potato Journal. (1973);  50 42-50
  • 3 Belanger G., Walsh J. R., Richards J. E., Milburn P. H., Ziadi N.. Yield response of two potato cultivars to supplemental irrigation and N fertilization in New Brunswick.  American Journal of Potato Research. (2000);  77 11-21
  • 4 Beutler H. O.. Starch. Bergmeyer, H. U., Bergmeyer, J., and Graßl, M., eds. Methods of Enzymatic Analysis - Metabolites 1: Carbohydrates, Vol. VI. Weinheim; Verlag Chemie (1984): 2-10
  • 5 Blachinski D., Shtienberg D., Dinoor A., Kafafi U., Sujkowski L. S., Zitter T. A., Fry W. E.. Influence of foliar application of nitrogen and potassium on Alternaria diseases in potato, tomato and cotton.  Phytoparasitica. (1996);  24 281-292
  • 6 Böhm J., Hahn A., Schubert R., Bahnweg G., Adler N., Nechwatal J., Oehlmann R., Oßwald W.. Real-time quantitative PCR: DNA determination in isolated spores of the mycorrhizal fungus Glomus mosseae and monitoring of Phytophthora infestans and Phytophthora citricola in their respective host plants.  Journal of Phytopathology. (1999);  147 409-416
  • 7 Bowling S. A., Guo A., Cao H., Gordon A. S., Klessig D. F., Dong X.. A mutation of Arabidopsis that leads to constitutive expression of systemic acquired resistance.  Plant Cell. (1994);  6 1845-1857
  • 8 Bradford M. M.. A rapid and sensitive method for the quantification of microgram quantities of protein utilising the principle of a protein-dye binding.  Analytical Biochemistry. (1976);  72 248-254
  • 9 Carnegie S., Colhoun S.. Effects of plant nutrient on susceptibility of potato leaves to Phytophthora infestans.  Phytopathologische Zeitschrift. (1983);  108 242-250
  • 10 Chowdhury M. R. I., Sarwar A. K. M. G., Farooque A. M.. Effect of nitrogen and its methods of application on growth and yield in potato.  Journal of Biological Sciences. (2002);  2 616-619
  • 11 Colon L. T., Budding D. J., Visker M. H.. The effects of soil nitrogen on late blight resistance. Wenzel, G. and Wulfert, I., eds. Potatoes Today and Tomorrow. EAPR (2002): 100
  • 12 Flors V., Miralles C., González-Bosch C., Carda M., García-Agustín P.. Three novel synthetic amides of adipic acid protect Capsicum annuum plants against the necrotrophic pathogen Alternaria solani.  Physiological and Molecular Plant Pathology. (2003);  63 151-158
  • 13 Hahlbrock K., Scheel D.. Physiology and molecular biology of phenylpropanoid metabolism.  Annual Review of Plant Physiology and Plant Molecular Biology. (1989);  40 433-469
  • 14 Heil M., Hilpert A., Kaiser W., Linsenmair K. E.. Reduced growth and seed set following chemical induction of pathogen defence: does systemic acquired resistance (SAR) incur allocation costs?.  Journal of Ecology. (2000);  88 645-654
  • 15 Herlihy M.. Contrasting effects of nitrogen and phosphorus on potato tuber blight.  Plant Pathology. (1970);  19 65-68
  • 16 Herms D. A., Mattson W. J.. The dilemma of plants: to grow or to defend.  The Quartely Review of Biology. (1992);  67 283-335
  • 17 Jonasson S., Bryant J. P., Chapin F. S., Anderson M.. Plant phenols and nutrients in relation to variations in climate and rodent grazing.  The American Naturalist. (1986);  128 394-408
  • 18 Juárez H. S., Amaro J. R., Rivera M. D., Párraga A., Hijmans R. J.. The effect of nitrogen fertilization on potato late blight in the field. CIP Program Report 1999 - 2000. (2001): 69-75
  • 19 Kamoun S., van West P., Govers F.. Quantification of late blight resistance of potato using transgenic Phytophthora infestans expressing β-glucuronidase.  European Journal of Plant Pathology. (1998);  104 521-525
  • 20 Kamoun S., Huitema E., Vleeshowers V. G. A. A.. Resistance to oomycetes: a general role for the hypersensitive response?.  Trends in Plant Science. (1999);  4 196-200
  • 21 Keller H., Hohlfeld H., Wray V., Hahlbrock K., Scheel D., Strack D.. Changes in the accumulation of soluble and cell wall-bound phenolics in elicitor-treated cell suspension cultures and fungus-infected leaves of Solanum tuberosum.  Phytochemistry. (1996);  42 389-396
  • 22 Kolomiets M. V., Chen H., Gladon R. J., Braun E. J., Hannapel D. J.. A leaf lipoxygenase of potato induced specifically by pathogen infection.  Plant Physiology. (2000);  124 1121-1130
  • 23 Leser C., Treutter D.. Effects of nitrogen supply on growth, contents of phenolic compounds and pathogen (scab) resistance of apple trees.  Physiologia Plantarum. (2005);  123 49-56
  • 24 MacKenzie D. R.. Association of potato early blight, nitrogen fertilizer rate, and potato yield.  Plant Disease. (1981);  65 575-577
  • 25 Maiero M., Bean G. A., Ng T. J.. Toxin production by Alternaria solani and its related phytotoxicity to tomato breeding lines.  Phytopathology. (1991);  81 1030-1033
  • 26 Margna U.. Control at the level of substrate supply - an alternative in the regulation of phenylpropanoid accumulation in plant cells.  Phytochemistry. (1977);  16 419-426
  • 27 Matyssek R., Schnyder H., Elstner E. F., Munch J.-C., Pretzsch H., Sandermann H.. Growth and parasite defence in plants: the balance between resource sequestration and retention: in lieu of a guest editorial.  Plant Biology. (2002);  4 133-136
  • 28 Möller E. M.. Repetitive DNA-Sequenzen von Phytophthora infestans (Mont.) de Bary: ihre Charakterisierung und Verwendung zur Konstruktion von DNA-Sonden für diagnostische und taxonomische Zwecke. PhD Thesis, Universität Göttingen. (1989)
  • 29 Niepold F., Schöber-Butin B.. Application of the PCR technique to detect Phytophthora infestans in potato tubers and leaves.  Microbiological Research. (1995);  150 379-385
  • 30 Pehl L., Sturm H.. Stickstoff-Versorgung und Phytophthora-Befall der Kartoffeln.  Kartoffelbau. (1962);  2 29-30
  • 31 Pieterse C. M. J., De Wit P. J. G. M., Govers F. P. M.. Molecular aspects of the potato - Phytophthora infestans interaction.  Netherland Journal of Plant Pathology. (1992);  98 (Suppl. 2) 85-92
  • 32 v. Roepenack-Lahaye E., Newman M.-A., Schornack S., Hammond-Kosack K. E., Lahaye T., Jones J. D. G., Daniels M. J., Dow J. M.. p-Coumaroylnoradrenaline, a novel plant metabolite implicated in tomato defense against pathogens.  The Journal of Biological Chemistry. (2003);  278 43373-43383
  • 33 Rotem J.. The Genus Alternaria - Biology, Epidemiology and Pathogenicity. St. Paul, Minnesota; APS Press (1994)
  • 34 Rühmann S., Leser C., Bannert M., Treutter D.. Relationship between growth, secondary metabolism and resistance of apple.  Plant Biology. (2002);  4 137-143
  • 35 Saghai-Maroof M. A., Soliman K. M., Jorgensen R. A., Allard R. W.. Ribosomal DNA spacer length polymorphisms in barley: mendelian inheritance, chromosomal location and population dynamics.  Proceedings of the National Academy of Sciences of the USA. (1984);  81 8014-8018
  • 36 Schmidt A., Grimm R., Schmidt J., Scheel D., Strack D., Rosahl S.. Cloning and expression of a potato cDNA encoding hydroxycinnamoyl-CoA : tyramine N-(hydroxycinnamoyl)transferase.  The Journal of Biological Chemistry. (1999);  274 4273-4280
  • 37 Sinden S. L., Goth R. W., O'Brien M. J.. Effect of potato alkaloids on the growth of Alternaria solani and their possible role as resistance factors in potatoes.  Phytopathology. (1972);  63 303-307
  • 38 Soltanpour P. N., Harrison M. D.. Interrelations between nitrogen and phosphorous fertilization and early blight control of potatoes.  American Potato Journal. (1974);  51 1-7
  • 39 Stamp N.. Out of the quagmire of plant defense hypotheses.  The Quarterly Review of Biology. (2003);  78 23-55
  • 40 Strissel T., Halbwirth H., Hoyer U., Zistler C., Stich K., Treutter D.. Growth promoting nitrogen nutrition affects flavonoid biosynthesis of young apple (Malus domestica Borkh.) leaves.  Plant Biology. (2005);  7 168-175
  • 41 Treutter D., Santos-Buelga C., Gutmann M., Kolodziej H.. Identification of flavan-3-ols and procyanidins by HPLC and chemical reaction detection.  Journal of Chromatography A. (1994);  667 290-297
  • 42 Vega-Sánchez M. E., Erselius L. J., Rodriguez A. M., Bastidas O., Hohl H. R., Ojiambo P. S., Mukalazi J., Vermeulen T., Fry W. E., Forbes G. A.. Host adaptation to potato and tomato within the US‐1 clonal lineage of Phytophthora infestans in Uganda and Kenya.  Plant Pathology. (2000);  49 531-539
  • 43 Vleeshouwers V. G. A. A., van Dooijeweert W., Keizer L. C. P., Sijpkes L., Govers F., Colon L. T.. A laboratory assay for Phytophthora infestans resistance in various Solanum species reflects the field situation.  European Journal of Plant Pathology. (1999);  105 241-250
  • 44 Vos J., Biemond H.. Effects of nitrogen on the development and growth of the potato plant.  Annals of Botany. (1992);  70 27-35
  • 45 Yao K., De Luca V., Brisson N.. Creation of a metabolic sink for tryptophan alters the phenylpropanoid pathway and the susceptibility of potato to Phytophthora infestans.  Plant Cell. (1995);  7 1787-1799

I. Heiser

Lehrstuhl für Phytopathologie
Wissenschaftszentrum Weihenstephan
Technische Universität München

Am Hochanger 2

85350 Freising

Germany

eMail: heiser@lrz.tum.de

Guest Editor: R. Matyssek

    >