Plant Biol (Stuttg) 2006; 8(5): 615-626
DOI: 10.1055/s-2006-924076
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Localization of Methyl Benzoate Synthesis and Emission in Stephanotis floribunda and Nicotiana suaveolens Flowers

D. Rohrbeck1 , D. Buss1 , U. Effmert1 , B. Piechulla1
  • 1Institute of Biological Sciences, University of Rostock, Albert-Einstein-Straße 3, 18059 Rostock, Germany
Weitere Informationen

Publikationsverlauf

Received: December 23, 2005

Accepted: March 4, 2006

Publikationsdatum:
01. Juni 2006 (online)

Abstract

The emission of fragrances can qualitatively and quantitatively differ in different parts of flowers. A detailed analysis was initiated to localize the floral tissues and cells which contribute to scent synthesis in Stephanotis floribunda (Asclepiadaceae) and Nicotiana suaveolens (Solanaceae). The emission of scent compounds in these species is primarily found in the lobes of the corollas and little/no emission can be attributed to other floral organs or tissues. The rim and centre of the petal lobes of S. floribunda contribute equally to scent production since the amount of SAMT (salicylic acid carboxyl methyltransferase) and specific SAMT activity compensate each other in the rim region and centre region. In situ immunolocalizations with antibodies against the methyl benzoate and methyl salicylate-synthesizing enzyme indicate that the adaxial epidermis with few subepidermal cell layers of S. floribunda is the site of SAMT accumulation. In N. suaveolens flowers, the petal rim emits twice as much methyl benzoate due to higher total protein concentrations in the rim versus the petal centre; and, both the adaxial and abaxial epidermis house the BSMT (salicylic acid/benzoic acid carboxyl methyltransferase).

References

  • 1 Arcangeli D. I. G.. Osservazioni sull'impollinazione in alcune aracee.  Nuovo Giornale Botanica Italia. (1883);  7 72
  • 2 Bergström G., Dobson H. E. M., Groth I.. Spatial fragrance patterns within the flowers of Ranunculus acris (Ranunculaceae).  Plant Systematic and Evolution. (1995);  195 221-242
  • 3 Bradford M. M.. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.  Analytical Biochemistry. (1976);  72 248-254
  • 4 Dicke M., Bruin J.. Chemical information transfer between plants: back to the future.  Biochemical Systematics and Ecology. (2001);  29 981-994
  • 5 Dobson H. E. M., Bergström G., Groth J.. Differences in fragrance chemistry between flower parts of Rosa rugosa Thunb. (Rosaceae).  Israel Journal of Botany. (1990);  39 143-156
  • 6 Dobson H. E. M., Groth I., Bergström G.. Pollen advertisement: chemical constrasts between whole-flower and pollen odors.  American Journal of Botany. (1996);  83 877-885
  • 7 Dudareva N., Cseke L., Blanc V. M., Pichersky E.. Evolution of floral scent in Clarkia: novel patterns of S-Linalool synthase gene expression in the C. breweri flower.  Plant Cell. (1996);  8 1137-1148
  • 8 Dudareva N., Pichersky E.. Biochemical and molecular genetic aspects of floral scents.  Plant Physiology. (2000);  122 627-633
  • 9 Dudareva N., Pichersky E., Gershenzon J.. Biochemistry of plant volatiles.  Plant Physiology. (2004);  135 1893-1902
  • 10 Doetterl S., Juergens A.. Spatial fragrance patterns in flowers of Silene latifolia: Lilac compounds as olfactory nectar guides?.  Plant Systematics and Evolution. (2005);  255 99-109
  • 11 Effmert U., Große J., Röse U. S. R., Ehrig F., Kägi R., Piechulla B.. Volatile composition, emission pattern, and localization of floral scent emission in Mirabilis jalapa (Nyctaginaceae).  American Journal of Botany. (2005 a);  92 2-12
  • 12 Effmert U., Saschenbrecker S., Ross J., Negre F., Fraser C. M., Noel J. P., Dudareva N., Piechulla P.. Floral benzoid carboxyl methyltransferases: from in vitro to in planta function.  Phytochemistry. (2005 b);  66 1211-1230
  • 13 Effmert U., Buss D., Rohrbeck D., Piechulla B.. Localization of the synthesis and emission of scent compounds within the flower. Dudareva, N. and Pichersky, E., eds. Floral Scent. CRC Press LLC (2005 c): 105-124
  • 14 Esen A.. A simple method for quantitative, semiquantitative, and qualitative assay of protein.  Analytical Biochemistry. (1978);  89 264-273
  • 15 Flamini G., Cioni P. L., Morelli I.. Differences in the fragrances of pollen, leaves, and floral parts of garland (Chrysanthemum coronarium) and composition in the essential oils from flower heads and leaves.  Journal of Agriculture and Food Chemistry. (2003);  51 2267
  • 16 Goodwin S. M., Kolosova N., Kish C. M., Wood K. V., Dudareva N., Jenks M. A.. Cuticle characteristic and volatile emissions of petals in Antirrhinum majus.  Physiologia Plantarum. (2003);  117 435-443
  • 17 Grotewold E., Chamberlain M., St. Claire G., Swendon J., Siame B. A., Butler L. G., Snook M., Bowen B.. Engineering secondary metabolism in maize cells by ectopic expression of transcription factors.  Plant Cell. (1998);  10 721-740
  • 18 Grotewold E.. The challenges of moving chemicals within and out of cells: insights into the transport of plant natural products.  Planta. (2004);  219 906-909
  • 19 Jasinski M., Stukkens Y., Degand H., Purnelle B., Marchand-Brynaert J., Bountry M.. A plant plasma membrane ATP binding cassette-type transporter is involved in antifungal terpenoid secretion.  Plant Cell. (2001);  13 1095-1107
  • 20 Knudsen J. T., Tollsten L., Bergström L. G.. Floral scents - a checklist of volatile compounds isolated by head-space techniques.  Phytochemistry. (1993 a);  33 253-280
  • 21 Knudsen J. T., Tollsten L.. Trends in floral scent chemistry in pollination syndromes: floral scent composition in moth-pollinated taxa.  Botanical Journal of the Linnean Society. (1993 b);  113 263-284
  • 22 Kolosova N., Sherman D., Karlson D., Dudareva N.. Cellular and subcellular localization of S-adenosyl-L-methionine: benzoic acid carboxyl methyltransferase, the enzyme responsible for biosynthesis of the volatile ester methylbenzoate in snapdragon flowers.  Plant Physiology. (2001);  126 956-964
  • 23 Lex T.. Duftmale an Blüten.  Zeitschrift Vergleichende Physiologie. (1954);  36 212-234
  • 24 Lin Y., Irani N. G., Grotewold E.. Sub-cellular trafficking of phytochemicals using autofluorescent compounds in maize cells.  BMC Plant Biology. (2003);  3 10.1-10.12
  • 25 Mattiacci L., Rocca B. A., Scascighini N., DÀlessandro M., Hern A., Dorn S.. Systematically induced plant volatiles emitted at the time of “danger”.  Journal of Chemical Ecology. (2001);  27 2233-2252
  • 26 Pichersky E., Raguso R. A., Lewinsohn E., Croteau R.. Floral scent production in Clarkia (Onagraceae). I. Localization and developmental modulation of monoterpene emission and linalool synthase activity.  Plant Physiology. (1994);  106 1533-1540
  • 27 Pott M. B., Pichersky E., Piechulla B.. Evening specific oscillations of scent emission, SAMT enzyme activity, and SAMT mRNA in flowers of Stephanotis floribunda.  Journal of Plant Physiology. (2002);  159 925-934
  • 28 Pott M. B., Effmert U., Piechulla B.. Transcriptional and post-translational regulation of S-adenosyl-L-methionine: salicylic acid carboxyl methyltransferase (SAMT) during Stephanotis floribunda flower development.  Journal of Plant Physiology. (2003);  160 635-643
  • 29 Pott M. B.. Molekulare und biochemische Regulation der Emission von Blütenduftstoffen. Dissertation Mathematisch-Naturwissenschaftliche Fakultät, Universität Rostock, ISBN 3-89825-646-4. (2003)
  • 30 Pridgeon A. M., Stern W. L.. Osmophores of Scaphosepalum (Orchidaceae).  Botanical Gazette. (1985);  146 115-123
  • 31 Raguso R. A., Pichersky E.. A day in the life of a linalool molecule: chemical communication in a plant-pollinator system. Part 1: Linalool biosynthesis in flowering plants.  Plant Species Biology. (1999);  14 95-120
  • 32 Raguso R. A., Levin R. A., Foose E., Holberg M. W., McDade L. A.. Fragrance chemistry, noctural rhythms and pollination “syndromes” in Nicotiana.  Phytochemistry. (2003);  63 265-284
  • 33 Saslowsky D., Winkel-Shirley B.. Localization of flavonoid enzymes in Arabidopsis roots.  The Plant Journal. (2001);  27 37-48
  • 34 Shulaev V., Silverman P., Raskin I.. Airborne signalling by methyl salicylate in plant pathogen resistance.  Nature. (1997);  385 718-721
  • 35 Skubatz H., Kunkel D. D.. Further studies of the glandular tissue of the Sauromatum guttatum (Araceae) appendix.  American Journal of Botany. (1999);  86 841-854
  • 36 Stern W. L., Curry K. J., Pridgeon A. M.. Osmophores of Stanhopea (Orchidaceae).  American Journal of Botany. (1987);  74 1323-1331
  • 37 Turner G. W., Gershenzon J., Croteau R. B.. Distribution of peltate glandular trichomes on developing leaves of Peppermint.  Plant Physiology. (2000 a);  124 655-664
  • 38 Turner G. W., Gershenzon J., Croteau R. B.. Development of peltate glandular trichomes of Peppermint.  Plant Physiology. (2000 b);  124 665-680
  • 39 Vogel S.. Duftdrüsen im Dienste der Bestäubung. Über Bau und Funktion der Osmophoren. Abhandlung der Mathematisch-Naturwissenschaftlichen Klasse, Akademie der Wissenschaften und der Literatur, Mainz. (1962): 599-763
  • 40 Von Aufsess A.. Geruchliche Nahorientierung der Biene bei entomophilen Blüten.  Zeitschrift Vergleichende Physiologie. (1960);  43 469-498
  • 41 Wang J., Dudareva N., Bhakta S., Raguso R. A., Pichersky E.. Floral scent production in Clarkia breweri (Onagraceae). II. Localization and developmental modulation of the enzyme S-adenosyl-L-methionine: (iso)eugenol O-methyltransferase and phenylpropanoid emission.  Plant Physiology. (1997);  114 213-221
  • 42 Werker E., Ravid U., Putievsky E.. Glandular hairs and their secretions in the vegetative and reproductive organs of Salvia sclarea and S. dominica.  Israel Journal of Botany. (1985);  34 239-252
  • 43 Zabetakis I., Golden M. A.. Strawberry flavour: analysis and biosynthesis.  Journal of Food and Agriculture. (1997);  74 421-434

B. Piechulla

Institute of Biological Sciences
University of Rostock

Albert-Einstein-Straße 3

18059 Rostock

Germany

eMail: birgit.piechulla@biologie.uni-rostock.de

Editor: E. Pichersky

    >