Plant Biol (Stuttg) 2006; 8(2): 271-276
DOI: 10.1055/s-2006-923876
Short Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Correlation between AS1 Gene Expression and Seed Protein Contents in Different Soybean (Glycine Max [L.] Merr.) Cultivars

T.-F. Wan1 , G.-H. Shao1 , 2 , X.-C. Shan1 , N.-Y. Zeng1 , H.-M. Lam1
  • 1Department of Biology, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong
  • 2Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 30 Baishiqiao Road, Beijing, P.R. China
Further Information

Publication History

Received: October 31, 2005

Accepted: January 4, 2006

Publication Date:
17 March 2006 (online)

Abstract

In higher plants, asparagine synthetase (AS) plays an important role in regulating the nitrogen sink-source relationship. We studied the expression of AS genes in five Chinese soybean cultivars exhibiting contrasting seed protein contents. We found that only the AS2 but not the AS1 gene was induced by dark treatment. On the other hand, the expression of AS1 in leaves (especially in trifoliate leaves of young seedlings) showed a positive correlation with seed protein contents in the soybean cultivars tested. Therefore, in spite of the fact that the principle transporting compounds in soybean plants for nitrogen acquired via symbiotic fixation are ureides, AS may still play an important role in the process of nitrogen assimilation.

References

  • 1 Biederbeck V. O., Bjorge H. A., Brandt S. A., Henry J. L., Hultgreen G. E., Kielly G. A., Slindard A. E.. Soil Improvement with Legumes Including Legumes in Crop Rotations. Saskatchewan Agriculture, Food and Rural Revitalization. (1995)
  • 2 Brears T., Liu C., Knight T. J., Coruzzi G. M.. Ectopic overexpression of asparagine synthetase in transgenic tobacco.  Plant Physiology. (1993);  103 1285-1290
  • 3 Cui Z.-L., Gai J.-Y., Carter Jr. T. E., Qiu J.-C., Zhao T.-J.. The Released Chinese Soybean Cultivars and Their Pedigree Analyses. Beijing; Chinese Agricultural Press (1998)
  • 4 Dembinski E., Bany S.. The amino acid pool of high and low protein rye inbred lines (Secale cereale L.).  Journal of Plant Physiology. (1991);  138 494-496
  • 5 Epstein E.. Mineral Nutrition of Plants: Principles and Perspectives. New York; John Wiley and Sons, Inc (1972)
  • 6 Fehr W. R., Caviness C. E.. Stages of soybean development. Special Report Number 80, Iowa State University, Ames, IA, USA. (1977)
  • 7 Gao J. F., Wang Q., Zhang H.. Application of 15N in the study of nitrogen fixation in soybean.  Soybean Sciences. (1987);  6 55-61
  • 8 Hughes C. A., Beard H. S., Matthews B. F.. Molecular cloning and expression of two cDNA encoding asparagine synthetase in soybean.  Plant Molecular Biology. (1997);  33 301-311
  • 9 Jackson A. O., Larkins B. A.. Influence of ionic strength, pH, and chelation of divalent metals on isolation of polyribosomes from tobacco leaves.  Plant Physiology. (1976);  57 5-10
  • 10 King J. E., Gifford D. J.. Amino acid utilization in seeds of loblolly pine during germination and early seedling growth.  Plant Physiology. (1997);  113 1125-1135
  • 11 Lam H.-M., Coschigano K. T., Oliveira I. C., Melo-Oliveira R., Coruzzi G.. The molecular-genetics of nitrogen assimilation into amino acids in higher plants.  Annual Review of Plant Physiology and Plant Molecular Biology. (1996);  47 569-593
  • 12 Lam H.-M., Hsieh M.-H., Coruzzi G.. Reciprocal regulation of distinct asparagine synthetase genes by light and metabolites in Arabidopsis thaliana.  The Plant Journal. (1998);  16 345-353
  • 13 Lam H. M., Peng S. S., Coruzzi G. M.. Metabolic regulation of the gene encoding glutamine-dependent asparagine synthetase in Arabidopsis thaliana.  Plant Physiology. (1994);  106 1347-1357
  • 14 Lam H.-M., Wong P., Chan H.-K., Yam K.-M., Chen L., Chow C.-M., Coruzzi G. M.. Overexpression of the ASN1 gene enhances nitrogen status in seeds of Arabidopsis. .  Plant Physiology. (2003);  132 926-935
  • 15 Layzell D. B., LaRue T. A.. Modeling C and N transport to developing soybean fruits.  Plant Physiology. (1982);  70 1290-1298
  • 16 Lea P. J., Miflin B. J.. Transport and metabolism of asparagine and other nitrogen compounds within the plant. Stumpt, P. K. and Conn, E. E., eds. The Biochemistry of Plants. New York; Academic Press (1980): 569-607
  • 17 Lohaus G., Buker M., Huβmann M., Soave C., Heldt H.-W.. Transport of amino acids with special emphasis on the synthesis and transport of asparagine in the Illinois Low Protein and Illinois High Protein strains of maize.  Planta. (1998);  205 181-188
  • 18 Seebauer J. R., Moose S. P., Fabbri B. J., Crossland L. D., Below F. E.. Amino acid metabolism in maize earshoots. Implications for assimilate preconditioning and nitrogen signaling.  Plant Physiology. (2004);  136 4326-4334
  • 19 Winkler R. D., Blevins D. G., Polacco J. C., Randall D. D.. Ureide catabolism in soybeans. II. Pathway of catabolism in intact leaf tissue.  Plant Physiology. (1987);  83 585-591
  • 20 Wong H.-K., Coruzzi G. M., Lam H.-M.. Correlation of ASN2 gene expression with ammonium metabolism in Arabidopsis. .  Plant Physiology. (2004);  134 332-338

H.-M. Lam

Department of Biology
The Chinese University of Hong Kong

Shatin N. T.

Hong Kong

Email: honming@cuhk.edu.hk

Editor: J. Cullimore