Subscribe to RSS
DOI: 10.1055/s-2005-921907
A Stereodivergent Synthesis of Hydroxyethylene Dipeptide Isostere via Highly Diastereoselective Epoxidation
Publication History
Publication Date:
04 November 2005 (online)

Abstract
Epoxidation of δ-amino-β,γ-unsaturated ester with trifluoroperacetic acid afforded its epoxide in a highly diastereoselective manner. Subsequent stereodivergent epoxide opening reactions provided synthetic routes towards both the threo and erythro hydroxyethylene peptide isostere.
Key words
hydroxyethylene isostere - diastereoselective epoxidation - stereodivergent - epoxide ring opening
- 1
Greenlee WJ. J. Med. Res. Rev. 1990, 10: 173 - 2
Huff JR. J. Med. Chem. 1991, 34: 2305 - 3
Chun J.Yin YI.Yang G.Tarassishin L.Li Y.-M. J. Org. Chem. 2004, 69: 7344 - 4
Li B.Buzon RA.Castaldi MJ. Org. Process Res. Dev. 2001, 5: 609 -
5a
Steurer S.Podlech J. Eur. J. Org. Chem. 1999, 1551 -
5b
Steurer S.Podlech J. Eur. J. Org. Chem. 2002, 899 -
6a
Li B.Buzon RA.Chiu CK.-F.Colgan ST.Jorgensen ML.Kasthurikrishnan N. Tetrahedron Lett. 2004, 45: 6887 -
6b
McWilliams JC.Armstrong JD.Zheng N.Volante BRP.Reider PJ. J. Am. Chem. Soc. 1996, 118: 11970 -
6c
Kano S.Yokomatsu T.Shibuya S. Tetrahedron Lett. 1991, 32: 233 -
6d
Hormuch S.Reissig H.-U.Dorsch D. Angew. Chem., Int. Ed. Engl. 1993, 32: 1449 -
7a
Hanazawa T.Okamoto S.Sato F. Org. Lett. 2000, 2: 2369 -
7b
Hanessian S.Park H.Yang R.-Y. Synlett 1997, 351 -
8a
Urban FJ.Jasys VJ. Org. Process Res. Dev. 2004, 8: 169 -
8b
Diederich AM.Ryckman DM. Tetrahedron Lett. 1993, 34: 6169 -
9a
Fray AH.Kaye RL.Kleinman EF. J. Org. Chem. 1986, 51: 4828 -
9b
Nadin A.Sanchez Lopez JM.Neduvelil JG.Thomas SR. Tetrahedron 2001, 57: 1861 -
9c
Buhlmayer P.Caselli A.Fuhrer W.Goschke R.Rasetti V.Rueger H.Stanton JL.Criscione L.Wood JM. J. Med. Chem. 1988, 31: 1839 -
9d
Evans BE.Rittle KE.Homnick CF.Springer JP.Hirshfield J.Veber DF. J. Org. Chem. 1985, 50: 4615 -
9e
Danielmeier K.Schierle K.Steckhan E. Angew. Chem., Int. Ed. Engl. 1996, 35: 2247 - 10
Fukuzawa S.-i.Miura M.Saitoh T. J. Org. Chem. 2003, 68: 2042 -
11a
Dondoni A.Perrone D.Semola MT. J. Org. Chem. 1995, 60: 7927 -
11b
Dondoni A.Perrone D. Tetrahedron Lett. 1992, 33: 7259 - 12
Ghosh AK.Mckee SP.Thompson WJ. J. Org. Chem. 1991, 56: 6500 - 13
Sakurai M.Saito F.Ohata Y.Yabe Y.Nishi T. Chem. Commun. 1992, 1562 -
14a
Pasto M.Moyano A.Pericas MA.Riera A. Tetrahedron Lett. 1998, 39: 1233 -
14b
Aguilar N.Moyano A.Pericas MA.Riera A. J. Org. Chem. 1998, 63: 3560 - 15
Ghosh AK.Shin D.Mathivanan P. Chem. Commun. 1999, 1025 - 16
Kondekar NB.Kandula SRV.Kumar P. Tetrahedron Lett. 2004, 45: 5477 - 17
Ghosh AK.Cappiello J.Shin D. Tetrahedron Lett. 1998, 39: 4651 -
18a
Vabeno J.Brisander M.Lejon T.Luthman K. J. Org. Chem. 2002, 67: 9186 -
18b
Chakravarty PK.de Laszlo SE.Sarnella CS.Springer JP.Schuda PF. Tetrahedron Lett. 1989, 30: 415 -
18c
Steuer S.Podlech J. Org. Lett. 1999, 1: 481 -
18d
Brewer M.Rich DH. Org. Lett. 2001, 3: 945 -
18e
Pegorier L.Larcheveque M. Tetrahedron Lett. 1995, 36: 2753 -
18f
Kang SH.Ryu DH. Bioorg. Med. Chem. Lett. 1995, 5: 2959 - 20
Lee KW.Hwang SY.Kim CR.Nam DH.Chang JH.Choi BS.Choi H.-w.Lee KK.So B.Cho SW.Shin H. Org. Process Res. Dev. 2003, 7: 839 - 21
Cooper MS.Heaney H.Newbold AJ.Sanderson WR. Synlett 1990, 533 - 23
Ibuka T.Habashita H.Otaka A.Fujii N. J. Org. Chem. 1991, 56: 4370 - 24
Brown HC.Brown CA. J. Am. Chem. Soc. 1963, 85: 1003 - 26
Casado-Bellver FJ.Gonzalez-Rosende ME.Asensio A.Jorda-Gregori JM.Alvarez-Sorolla A.Sepulveda-Arques J.Orena M.Galeazzi R. J. Chem. Soc., Perkin Trans. 1 2002, 1650
References
Ene-acid 3a is available in multi-kg quantities (Z/E selectivity, 24:1; 83% ee); see ref. 20.
22Preparation of 4a: To a stirred mixture of 3b (660 mg, 1.87 mmol), urea hydrogen peroxide (790 mg, 8.40 mmol), and Na2HPO4 (1.12 g, 7.89 mmol) in CH2Cl2 (10 mL) was added (CF3CO)2O (784 mg, 3.73 mmol) at 0 °C. The mixture was allowed to warm to r.t. and stirred for 4 h. The reaction mixture was washed with a sat. aq solution of NaHCO3, a 5% solution of NaHSO3, and finally H2O. The separated organic layer was concentrated and MTBE (15 mL) was added to the residue. The mixture was stirred for 5 h. The solid formed was filtered and washed with MTBE (2 mL). The cake was dried over a stream of nitrogen to give 4a (615 mg, 86.1%) as a white solid; 4a t R 31.4 min, ent -4a t R 40.8 min (Chiralpak® AD-H; 35 °C; 10% i-PrOH-hexane; 1 mL/min; 250 nm); ee of isolated 4a ³99.9%, while the ee of the filtrate was 50%, which reflects highly selective recrystallization. 1H NMR (CDCl3, 400 MHz): δ = 7.38-7.18 (10 H, m), 5.12 (1 H, d, J = 12.4 Hz), 5.09 (1 H, d, J = 12.4 Hz), 4.95 (1 H, br), 3.71 (1 H, m), 3.67 (3 H, s), 3.32 (1 H, m), 3.07 (1 H, m), 3.01 (1 H, dd, J = 8.0, 4.4 Hz), 2.85 (1 H, dd, J = 13.2, 8.0 Hz), 2.38 (1 H, dd, J = 16.8, 7.6 Hz), 2.03 (1 H, dd, J = 17.2, 4.8 Hz); 13C NMR (CDCl3, 125 MHz): δ = 170.8, 155.8, 136.6, 136.5, 129.6, 128.7, 128.6, 128.2, 128.1, 127.0, 67.0, 57.6, 53.6, 52.0, 51.8, 39.5, 33.3.
25Benzyl (1 S )-1-[(2′ S )-5′-oxotetrahydrofuran-2′-yl]-2-phenylethylcarbamate ( 6): [α]D 25 = -9.6 (CHCl3, c 1); 1H NMR (CDCl3, 500 MHz): δ = 7.34-7.25 (10 H, m), 5.09 (1 H, d, J = 12.4 Hz), 5.05 (1 H, d, J = 12.4 Hz), 4.87 (d, 1 H, J = 10.0Hz), 4.48 (1 H, t, J = 7.8 Hz), 4.07 (dd, 1 H, J = 17.5, 8.7 Hz), 2.98 (1 H, dd, J = 13.3, 6.9 Hz), 2.90 (1 H, dd, J = 13.3, 8.7 Hz), 2.48 (dd, 2 H, J = 9.7, 7.4 Hz), 2.16-2.03 (2 H, m); 13C NMR (CDCl3,125 MHz): δ = 177.2, 156.7, 137.1, 136.4, 129.4, 128.8, 128.6, 128.2, 128.0, 126.9, 79.9, 54.9, 39.3, 28.7, 24.1; MS: m/z = 340 [M + H].
27Amino-ester side-product (Figure [1] ): 1H NMR (CDCl3, 400 MHz): δ = 7.34-7.28 (5 H, m), 3.57 (3 H, s), 3.51 (1 H, m), 3.24 (1 H, dd, J = 13.6, 5.6 Hz), 2.95 (1 H, dd, J = 13.6, 8.8 Hz), 2.32 (2 H, m), 1.95-1.69 (4 H, m); MS: m/z = 222 [M + H].
28Lactam side-product (Figure [2] ): 1H NMR (CDCl3, 400 MHz): δ = 7.35-7.17 (5 H, m), 5.65 (1 H, br), 3.61 (1 H, m), 2.88 (1 H, dd, J = 13.6, 5.2 Hz), 2.62 (1 H, dd, J = 13.6, 9.2 Hz), 2.43-2.29 (2 H, m), 1.94 (2 H, m), 1.68 (1 H, m), 1.47 (1 H, m); MS: m/z = 190 [M + H] .
29Benzyl (1 S )-1-[(2′ R )-5′-oxotetrahydrofuran-2′-yl]-2-phenylethylcarbamate ( 10): [α]D 25 = -8.6 (CHCl3, c 0.02); 1H NMR (CDCl3, 400 MHz): δ = 7.37-7.18 (10 H, m), 5.04 (2 H, s), 4.66 (1 H, br), 4.40 (1 H, m), 4.05 (1 H, m), 3.03 (1 H, dd, J = 14.4, 4.4 Hz), 2.90 (1 H, m), 2.52 (2 H, m), 2.25 (1 H, m), 2.11 (1 H, m); 13C NMR (CDCl3, 100 MHz): δ = 176.6, 165.9, 136.1, 132.7, 129.5, 128.8, 128.6, 128.3, 128.0, 127.0, 80.4, 60.4, 50.0, 30.9, 28.2, 24.7; MS: m/z = 340 [M + H] .