Synthesis 2005(18): 3167-3178  
DOI: 10.1055/s-2005-918428
FEATUREARTICLE
© Georg Thieme Verlag Stuttgart · New York

A Divergent Synthesis of Triyne Natural Products and Glycosylated Analogues Using a Carbenoid Rearrangement

Thanh Luu, Wei Shi, Todd L. Lowary*, Rik R. Tykwinski*
Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
Fax: +1(780)4928231 ; e-Mail: rik.tykwinski@ualberta.ca; e-Mail: tlowary@ualberta.ca;
Further Information

Publication History

Received 23 July 2005
Publication Date:
25 October 2005 (online)

Abstract

Using a carbenoid rearrangement to introduce the conjugated acetylenic framework, a series of triynols has been synthesized in five steps from 1,4-butynediol. Several of the triyne alcohols are known natural products and others are glycosylated analogues. This route avoids the use of terminal diynes as precursors, which can be unstable and/or difficult to prepare. It is therefore procedurally attractive in comparison to more traditional routes such as the Cadiot-Chodkiewicz and Sonogashira coupling reactions.

    References

  • Plant and fungal sources:
  • 2a Chemistry and Biology of Naturally Occurring Acetylenes and Related Compounds (NOARC)   Lam J. Breteler H. Arnason T. Hansen L. Elsevier; New York: 1988. 
  • 2b Bohlmann F. Burkhardt H. Zdero C. Naturally Occurring Acetylenes   Academic Press; New York: 1973. 
  • 2c Christensen LP. Phytochemistry  1992,  31:  7 
  • 2d Bohlmann F. In Chemistry of Acetylenes   Chap. 14:  Viehe HG. Marcel Dekker; New York: 1969.  p.977-986  
  • 2e Jones ERH. Thaller V. In The Chemistry of the Carbon-Carbon Triple Bond   Part 2:  Patai S. John Wiley & Sons; New York: 1978.  Chap. 14. p.621-633  
  • 2f Jones ERH. Thaller V. In Handbook of Microbiology Microbial Products   Vol. 3:  Laskin AI. Lechevalier HA. CRC Press; Cleveland: 1973.  p.63-74  
  • 2g Jones ERH. Proc. Chem. Soc., London  1960,  199 
  • From marine sources:
  • 3a Blunt JW. Copp BR. Munro MHG. Northcote PT. Prinsep MR. Nat. Prod. Rep.  2003,  20:  1 
  • 3b Faulkner DJ. Nat. Prod. Rep.  2002,  19:  1 
  • 3c Faulkner DJ. Nat. Prod. Rep.  2001,  18:  1 
  • 3d Faulkner DJ. Nat. Prod. Rep.  2000,  17:  7 
  • 4 From the soldier beetle: Meinwald J. Meinwald YC. Chalmers AM. Eisner T. Science (Washington, D.C.)  1968,  160:  890 ; it should be noted, however, that this compound likely derives from the plants which compose the diet of the beetle, see reference 2e
  • 5 Arnason JT. Philogene BJR. Berg C. MacEachern A. Kaminski J. Leitch LC. Morand P. Lam J. Phytochemistry  1986,  25:  1609 
  • For example
  • 6a Kobaisy M. Abramowski Z. Lermer L. Saxena G. Hancock REW. Towers GHN. Doxsee D. Stokes RW. J. Nat. Prod.  1997,  60:  1210 
  • 6b Fusetani N. Toyoda T. Asai N. Matsunaga S. Maruyama T. J. Nat. Prod.  1996,  59:  796 
  • 7 Rashid MA. Gustafson KR. Cardellina JH. Boyd MR. Nat. Prod. Lett.  2001,  15:  21 
  • 8a Nakamura Y. Kawamoto N. Ohto Y. Torikai K. Murakami A. Ohigashi H. Cancer Lett.  1999,  140:  37 
  • 8b Ito A. Cui BL. Chavez D. Chai HB. Shin YG. Kawanishi K. Kardono LBS. Riswan S. Farnsworth NR. Cordell GA. Pezzuto JM. Kinghorn AD. J. Nat. Prod.  2001,  64:  246 
  • 8c Ahn B.-Z. Kim S.-I. Arch. Pharm. (Weinheim, Ger.)  1988,  321:  61 
  • For leading reviews, see:
  • 9a Gardner JN. Jones ERH. Leeming PR. Stephenson JS. J. Chem. Soc.  1960,  691 
  • 9b Sörensen NA. Proc. Chem. Soc., London  1961,  98 
  • 9c Bohlmann F. Bornowski H. Arndt C. Fortschr. Chem. Forsch.  1962,  4:  138 
  • 9d Bu’Lock JD. Prog. Org. Chem.  1964,  6:  86 
  • 11 For an excellent review of these methods, see: Siemsen P. Livingston RC. Diederich F. Angew. Chem. Int. Ed.  2000,  39:  2633 
  • For reviews, see:
  • 12a Stang PJ. Chem. Rev.  1978,  78:  383 
  • 12b Knorr R. Chem. Rev.  2004,  104:  3795 
  • 13a Eisler S. Chahal N. McDonald R. Tykwinski RR. Chem. Eur. J.  2003,  9:  2452 
  • 13b Shi Shun ALK. Chernick ET. Eisler S. Tykwinski RR. J. Org. Chem.  2003,  68:  1339 
  • 13c Shi Shun ALK. Tykwinski RR. J. Org. Chem.  2003,  68:  6810 
  • 14 For an excellent summary of natural and synthetic acetylenosaccharides, see: Vasella A. In Acetylene Chemistry - Chemistry, Biology, and Materials Science   Diederich F. Stang PJ. Tykwinski RR. Wiley-VCH; Weinheim: 2005.  Chap. 5.
  • 15a Livingston RC. Cox LR. Gramlich V. Diederich F. Angew. Chem. Int. Ed.  2001,  40:  2334 
  • 15b Livingston R. Cox LR. Odermatt S. Diederich F. Helv. Chim. Acta  2002,  85:  3052 
  • 16a Ramirez F. Desai NB. McKelvie N. J. Am. Chem. Soc.  1962,  84:  1745 
  • 16b Corey EJ. Fuchs PL. Tetrahedron Lett.  1972,  3769 
  • 16c Posner GH. Loomis GL. Sawaya HS. Tetrahedron Lett.  1975,  1373 
  • 17 Mattes H. Benezra C. Tetrahedron Lett.  1987,  28:  1697 
  • 18 McIntosh MC. Weinreb SM. J. Org. Chem.  1993,  58:  4823 
  • 19 Anthony J. Boldi AM. Rubin Y. Hobi M. Gramlich V. Knobler CB. Seiler P. Diederich F. Helv. Chim. Acta  1995,  78:  13 
  • 20 Hearn MTW. Jones ERH. Pellatt MG. Thaller V. Turner JL. J. Chem. Soc., Perkin Trans. 1  1973,  2785 
  • Compound 21 has been synthesized using the Cadiot-Chodkiewicz protocol, see:
  • 21a Curtis RF. Taylor JA. J. Chem. Soc. C  1971,  186 
  • 21b Chodkiewicz W. Ann. Chim. (Paris)  1957,  2:  819 
  • 22 Bohlmann F. Bornowski H. Kleine K.-M. Chem. Ber.  1964,  97:  2135 
  • 23 Bohlmann F. Arndt C. Kleine K.-M. Wotschokowsky M. Chem. Ber.  1965,  98:  1228 
  • 24 Bendixen O. Lam J. Kaufmann F. Phytochemistry  1969,  8:  1021 
  • 25 Compound 26 has been synthesized previously using the Cadiot-Chodkiewicz protocol, see: Prévost S. Meier J. Chodkiewicz W. Cadiot P. Willemart A. Bull. Soc. Chim. Fr.  1961,  2171 ; compounds 26 and 27 have also been synthesized by Bohlmann, see reference 22
  • 26 Arnason T. Swain T. Wat C.-K. Graham EA. Parington S. Towers GHN. Lam J. Biochem. Syst. Ecol.  1981,  9:  63 
  • 27 Wang NL. Yao XS. Ishii R. Kitanaka S. Chem. Pharm. Bull.  2001,  49:  938 
  • 28 Rucker G. Kehrbaum S. Sakulas H. Lawong B. Goeltenboth F. Planta Med.  1992,  58:  266 
  • 29 Ubillas RP. Mendez CD. Jolad SD. Luo J. King SR. Carlson TJ. Fort DM. Planta Med.  2000,  66:  82 
  • 30 Kitanaka S, Yang HS, Wang HL, and Ishii R. inventors; Japanese Patent JP  2000-48564. New polyacetylene glycosides from Bidens plants as allergy inhibitors. Nissan Chemical Industries, Ltd., Japan:
  • 31 Gung BW. Fox RM. Tetrahedron  2004,  60:  9405 
  • 32 Hanessian S. Banoub J. Methods Carbohydr. Chem.  1980,  8:  243 
  • 33a Bérces A. Whitfield DM. Nukuda T. do Santos ZI. Obuchowska A. Krepinsky JJ. Can. J. Chem.  2004,  82:  1157 
  • 33b Nukuda T. Bérces A. Whitfield DM. J. Org. Chem.  1999,  64:  9030 
  • 33c Ziegler T. Kovac P. Glaudemans CPJ. Liebigs Ann. Chem.  1990,  613 ; and references therein
  • 34 Garegg PJ. Norberg T. Acta Chem. Scand., Ser. B  1979,  33:  116 
  • 35 Schmidt RR. Kinzy W. Adv. Carbohydr. Chem. Biochem.  1994,  50:  21 
1

The term polyyne is meant to denote compounds with a structural sequence of two or more consecutive (conjugated) acetylene units. The term polyacetylene has been often used in this context as well, but this term can be ambiguous due to its more common use in reference to polymerized acetylene.

10

For a review of recent polyyne syntheses, see: Shi Shun, A. L. K.; Tykwinski, R. R. Angew. Chem. Int. Ed., in press.