Subscribe to RSS
DOI: 10.1055/s-2005-918203
© Georg Thieme Verlag Stuttgart · New York
Mechanismen zur Beeinflussung der Zellphysiologie als Wundheilungskonzept
Mechanisms Influencing Cellular Physiology as a Concept of Treatment for Wound Healing DisturbancesPublication History
Publication Date:
29 December 2005 (online)
Zusammenfassung
Ziel: Neues Verständnis über Reparaturmechanismen in verschiedenen Gewebetypen ist die Grundlage aktueller therapeutischer Bemühungen. Im Zentrum vieler experimenteller und auch klinischer Ansätze steht die Beeinflussung der Angiogenese, die sicherlich auch im Kontext der Wundheilung von grundlegender Bedeutung ist. Sowohl die Applikation von Wachstumsfaktoren, als auch der Gentransfer oder die Anwendung genetisch manipulierter Zellen verfolgen häufig dieses Ziel. Der jedoch teilweise unkalkulierbare Effekt auf die induzierte Angiogenese führt auch zu sekundären Problemen wie einer Hyperpermeabilität, die von Gewebsödemen gefolgt zu einer Verschlechterung des Wundmilieus beitragen kann. Wir haben nach Mechanismen zur Beeinflussung der endothelialen Schrankenstörung gesucht. Methodik: In einer ersten experimentellen Untersuchung an kultivierten Endothelzellen verschiedener Herkunft haben wir untersucht, ob die Plasmatransglutaminase (Faktor XIII) einen Einfluss auf die endotheliale Barrierefunktion hat. In einer zweiten Untersuchung wurde der Einfluss der Plasmatransglutaminase unter klinischen Bedingungen an Patienten mit einem chronisch venösen Ulcus cruris untersucht. Ergebnisse: Der aktivierte FXIII (FXIIIA*) führte zu einer Dosis-abhängigen Verminderung der basalen Permeabilität der Endothelzellen um 30 % im Vergleich zur Kontrolle mit einer Maximalwirkung bei Konzentrationen zwischen 1 und 5 U/ml. Im Rahmen der klinischen Untersuchung konnten wir eine fast völlige Reduktion der initialen Hypersekretion im Wundbereich beobachten. Schlussfolgerung: Im experimentellen Ansatz konnten wir nachweisen, dass der aktivierte Faktor XIII die endotheliale Barriere stabilisiert und sogar gegen eine induzierte Hyperpermeabilität schützt. Die klinische Untersuchung zeigte, dass die Plasmatransglutaminase auch bei der lokalen Wundbehandlung zu einer Verminderung der Wundsekretion als Folge einer Barrierestörung führt. Somit könnte dieser Faktor eine therapeutische Option des lokalen oder generalisierten Leakage-Syndroms darstellen.
Abstract
Aim: Recent knowledge about repair mechanisms in different types of tissue is the basic of actual therapeutic efforts. Center of several experimental and clinical approaches is the influencing of angiogenesis with an also distinct meaning concerning wound healing. Therefore, application of growth factors, gene transfer, and employment of genetically manipulated cells often aim at angiogenesis. Nevertheless, manipulation of angiogenesis also leads to secondary problems such as hyperpermeability followed by impairment of local wound milieu. Our study was done to identify mechansims to protect from disturbances of endothelial barrier function. Method: In a first experimental investigation on cultured endothelial cells, the influence of plasma-transglutaminase (Factor XIII) to endothelial barrier function was studied. In a second step, the influence of Factor XIII on wound healing properties was investigated in patients with a chronic venous ulceration. Results: Activated Factor XIII (FXIIIA*) led to a dose-dependent reduction of endothelial cell permeability of 30 % compared to control with a maximum effect using 1 to 5 U/mL. Clinical investigation revealed a nearly complete reduction of wound secretion. Conclusion: Experimental studies revealed that activated Factor XIII stabalizes endothelial barrier under basic conditions as well as under conditions of induced hyperpermeability. Clinical study revealed that Factor XIII also distinctly reduces wound secretion. Therefore, plasma-transglutaminase may offer a new therapeutic option to treat the local or generalized leakage-syndrome.
Schlüsselwörter
endotheliale Barriere - Permeabilität - Wachstumsfaktor - Gentransfer - Faktor XIII
Key words
endothelial barrier - permeability - growth factors - gene transfer - factor XIII
Literatur
- 1 Ádány R, Kiss A, Muszbek L. Factor XIII: a marker of mono- and megakaryocytopoisis. Br J Haematol. 1987; 67 167-172
- 2 Barry E L, Mosher D F. Factor XIII crosslinking of fibronectin al cellular matrix assembly sites. J Biol Chem. 1988; 263 10464-10469
- 3 Bollinger A, Herrig I, Fischer M, Hoffmann U, Franzeck U K. Intravital capillaroscopy in patients with chronic venous insufficiency and lymphoedema: relevance to Daflon 500 mg. Int J Microcirc. 1995; 15 (Suppl 1) 41-44
- 4 Bruhn H D, Cristhophers E, Pohl J. Einflüsse des Gerinnungs- und Fibrinolysesystems auf den Wundheilungsprozeß und die Thrombusorganisation. Verh Dtsch Ges Inn Med. 1978; 84 1345-1348
- 5 Byrnes C K, Malone R W, Akhter N, Nass P H, Wetterwald A, Cecchini M G, Duncan M D, Harmon J W. Electroporation enhances transfection efficiency in murine cutaneous wounds. Wound Repair Regen. 2004; 12 397-403
- 6 Cohen I, Blankenberg T A, Borden D, Kahn D R, Veis A. Facto XIIIa-catalyzed cross-linking of platelet and muscle actin. Regulation by nucleotides. Biochim Biophys Acta. 1980; 628 365-375
- 7 Dejana E, Plantier J L. Molecular organization of endothelial cell to cell junctions. In: Vascular endothelium: In: Catravas JD (ed). Responses to injury. Plenum Press, New York 1996; 167-171
- 8 Fortuin F D, Vale P, Losordo D W, Symes J, DeLaria G A, Tyner J J, Schaer G L, March R, Snell R J, Henry T D, Van Camp J, Lopez J J, Richenbacher W, Isner J M, Schatz R A. One-year follow-up of direct myocardial gene transfer of vascular endothelial growth factor-2 using naked plasmid deoxyribonucleic acid by way of thoracotomy in no-option patients. Am J Cardiol. 2003; 92 436-439
- 9 Galeano M, Deodato B, Altavilla D, Squadrito G, Seminara P, Marini H, Stagno d'Alcontres F, Colonna M, Calo M, Lo Cascio P, Torre V, Giacca M, Venuti F S, Squadrito F. Effect of recombinant adeno-associated virus vector-mediated vascular endothelial growth factor gene transfer on wound healing after burne injury. Crit Care Med. 2003; 31 1017-1025
- 10 Garcia J GN, Verin A D, Schaphorst K L. Regulation of thrombin-mediated endothelial cell contraction and permeability. Sem Thromb Hemost. 1996; 22 309-315
- 11 Garcia J GN, Patterson C, Bahler C. Thrombin receptor activating peptides induce Ca2+ mobilization, barrier dysfunction, prostaglandin synthesis, and platelet-derived growth factor mRNA expression in cultured endothelium. J Cell Physiol. 1993; 156 541-549
- 12 Gottlieb A I, Langille B L, Wong M KK, Kim D W. Biology of disease: Structure and function of the endothelial cytoskeleton. Lab Invest. 1991; 65 123-137
- 13 Herouy Y, Hellstern M O, Vanscheidt W, Schäpf E, Norgauer J. Factor XIII-mediated inhibition of fibrinolysis and venous ulcers. Lancet. 2000; 355 1970-1971
- 14 Herouy Y, Trefzer D, Zimpfer U, Schäpf E, Vanscheidt W, Norgauer J. Matrix metalloproteinases and venous leg ulceration. Eur J Dermatol. 2000; 10 173-180
- 15 Ichinose A, Davie E W. Primary structure of human coagulation factor XIII. Adv Exp Med Biol. 1988; 231 15-27
- 16 Infanger M, Schmidt O, Kossmehl P, Grad S, Ertel W, Grimm D. Vascular endothelial growth factor serum level is strongly enhanced after burn injury and correlated with local and general tissue edema. Burns. 2004; 30 305-311
- 17 Isner J M, Walsh K, Symes J, Pieczek A, Takeshita S, Lowry J, Rossow S, Rosenfield K, Weir L, Brogi E, Schainfeld R. Arterial gene therapy for therapeutic angiogenesis in patients with peripheral artery disease. Circulation. 1995; 91 2687-2692
- 18 Iwaguro H, Yamaguchi J, Kalka C, Murasawa S, Masuda H, Hayashi S, Silver M, Li T, Isner J M, Asahara T. Endothelial progenitor all vascular endothelial growth factor gene transfer for vascular regeneration. Circulation. 2002; 105 732-738
- 19 Jeschke M G, Klein D. Liposomal gene transfer of multiple genes is more effective than gene transfer of a single gene. Gene Ther. 2004; 11 847-855
- 20 Kaczmarek E, Liu Y, Berse B, Chen C S, McDonagh J. Biosynthesis of plasma factor XIII: evidence for transcription and translation in hepatoma cells. Biochim Biophys Acta. 1995; 1247 127-134
- 21 Kall S, Kilpadi D, Reimers K, Choi C Y, Jahn S, Vogt P M. Influence of foam- and tubing material of the vacuum assited closure device (v. a. C.) on the concentration of transforming growth factor Beta 1 in wound fluid. Zentralbl Chir. 2004; 129 (Suppl 1) S 113-S 115
- 22 Kloczko J, Wojtukiewicz M, Bielawiec M, Zarzycka B, Kinalska I. Plasma factor XIII and some other haemostasis parameters in patients with diabetic angiopathy. Acta Haematol. 1986; 76 81-85
- 23 Li Z, Ning W, Wang J, Choi A, Lee P Y, Tyagi P, Huang L. Controlled gene delivery system based on thermosensitive biodegradable hydrogel. Pharm Res. 2003; 20 884-888
- 24 Lorand L. Activation of blood coagulation factor XIIIa. Ann NY Acad Sci. 1986; 485 144-158
- 25 Lum H, Malik A B. Regulation of vascular endothelial barrier function. Am J Physiol. 1994; 267 L 223-L 241
- 26 Mazzucco L, Medici D, Serra M, Panizza R, Rivara G, Orecchia S, Libener R, Cattana E, Levis A, Betta P G, Borzini P. The use of autologous platelet gel to treat difficult-to-heal wounds: a pilot study. Transfusion. 2004; 44 1013-1018
- 27 Mayhan W G. Effect of diabetes mellitus on disruption of the blood-brain barrier during acute hypertension. Brain Res. 1990; 534 106-110
- 28 McDonagh J. Biochemistry of fibrin-stabilizing factor (XIII). In: McDonagh J, Seitz R, Egbring R (eds). Factor XIII. Schattauer Verlag, Stuttgart, New York 1993; 2-8
- 29 Mirastschijski U, Haaksma C J, Tomasek J J, Agren M S. Matrix metalloproteinase inhibitor GM 6001 attenuates keratinocyte migration, contraction and myofibroblast formation in skin wound. Exp Cell Res. 2004; 299 465-475
- 30 Noll T, Wozniak G, McCarson K, Hajimohammad A, Metzner H J, Inserte J, Kummer W, Hehrlein F W, Piper H M. Effect of Factor XIII on endothelial barrier function. J Exp Med. 1999; 189 1373-1382
- 31 Ono I, Yamashita T, Hida T, Jin H Y, Ito Y, Hamada H, Akasaka Y, Ischii T, Jimbow K. Local administration of hepatocyte growth factor gene enhances the regeneration of dermis in acute incisional wounds. J Surg Res. 2004; 120 47-55
- 32 Philips N, Keller T, Gonzalez S. TGF beta-like regulation of matrix metalloproteinases by anti-transforming growth factor-beta, and anti-transforming growth factor-beta 1 antibodies in dermal fibroblasts: implications for wound healing. Wound Repair Regen. 2004; 12 53-59
- 33 Rivard A, Fabre J E, Silver M, Chen D, Murohara T, Kearney M, Magner M, Asahara T, Isner J M. Age-dependent impairment of angiogenesis. Circulation. 1999; 99 111-120
- 34 Sakata Y, Aoki M. Crosslinking of alpha2-plasmin inhibitor to fibrin by fibrin-stabilizing factor. J Clin Invest. 1980; 65 290-297
- 35 Saxena V, Hwang C W, Huang S, Eichbaum Q, Ingber D, Orgill D P. Vacuum-assited closure: microdeformations of wounds and cell proliferation. Plast Reconstr Surg. 2004; 114 1086-1096
- 36 Shyu K G, Chang H, Isner J M. Synergistic effect of angiopoietin-1 and vascular endothelial growth factor on neoangiogenesis in hypercholesterolemic rabbit model with acute hindlimb ischemia. Life Sci. 2003; 73 563-579
- 37 Simionescu N. Endothelial transport macromolecules: transcytosis and endocytosis. Cell Biol Reviews. 1991; 25 5-80
- 38 Spyridopoulos I, Luedemann C, Chen D, Kearney M, Chen D, Murohara T, Principe N, Isner J M, Losordo D W. Divergence of angiogenic and vascular permeability signaling by VEGF: inhibition of protein kinase C suppresses VEGF-induced angiogenesis, but promotes VEGF-induced, NO-dependent vascular permeability. Arterioscler Thromb Vasc Biol. 2002; 22 901-906
- 39 Uyl-De Groot C A, Hartog J G, Derksen J G, Symons E A, Buijt I, der Velden J van, Lindert A C van. Cost-effectiveness and quality of life of granulocyte-colony stimulating factor (filgrastim) after radcal vulvectomy and bilateral inguino-femoral lymphadenectomy: results of a randomized clinical trail. Eur J Gynecol Reprod Biol. 2004; 114 77-82
- 40 Vale P R, Losordo D W, Milliken C E, McDonald M C, Gravelin L M, Curry C M, Esakof D D, Maysky M, Symes J F, Isner J M. Randomized, single-blind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circulation. 2001; 103 2138-2143
- 41 der Bas J M van, Quax P H, der Berg A C van, Visser M J, der Linden E van, Bockel J H van. Ingrowth of aorta wall into stent grafts impregnated with basic fibroblast growth factor: a porcine in vivo study of blood vessel prothesis healing. J Vasc Surg. 2004; 39 850-858
- 42 Verderio E A, Johnson T, Griffin M. Tissue transglutaminase in normal and abnormal wound healing: review article. Amino Acids. 2004; 26 387-404
- 43 Wang X P, Schunck M, Kallen K J, Neumann C, Trautwein C, Rose-John S, Proksch E. The interleukin-6 cytokine system regulates epidermal permeability barrier hemostasis. J invest Dermatol. 2004; 123 124-131
- 44 Wozniak G. Vom Ulcus cruris zum Myokardödem: Beeinflussung der endothelialen Schrankenfunktion durch Faktor XIII. Med Welt. 2000; 51 25-30
- 45 Wozniak G, Noll T, Bott U, Hehrlein F W. Faktor XIII: experimentelle und klinische Ergebnisse beim diabetischen Malum perforans. Zentralbl Chir. 1999; 124 (Suppl 1) 73-77
- 46 Xue M, Thompson P, Kelso I, Jackson C. Activated protein C stimulates proliferation, migration and wound closure, inhibits apoptosis and upregulates MMP-2 activity in cultured human keratinocytes. Exp Cell Res. 2004; 299 119-127
- 47 Yoon Y S, Murayama T, Gravereaux E, Tkebuchava T, Silver M, Curry C, Wecker A, Kirchmair R, Hu C S, Kearney M, Asahare A, Jackson D G, Kubo H, Isner J M, Losordo D W. VEGF-C gene therapy augments postnatal lymphangiogenesis and ameliorates secondary lymphedema. J Clin Invest. 2003; 111 717-725
- 48 Zhao M, Bai H, Wang E, Forrester J V, McCraig C D. Electrical stimulation directly induces pre-angiogenetic responses in vascular endothelial cell by signaling through VEGF receptors. J Cell Sci. 2004; 117 397-405
- 49 Zhou S, Schmelz A, Seufferlein T, Li Y, Zhao J, Bachem M G. Molecular mechanisms of low intensity ultrasound in human skin fibroblasts. J Biol Chem. 2004; 279 54463-54469
Prof. Dr. med. G. Wozniak
Klinik für Gefäßchirurgie · Knappschaftskrankenhaus
Osterfelderstr. 157
46242 Bottrop
Phone: 0 20 41/15 12 01
Fax: 0 20 41/15 12 02
Email: gernold.wozniak@kk-bottrop.de